Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)
\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)
\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)
\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)
\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)
Áp dụng hệ thức lượng:
\(AB^2=HB.BC=HB\left(HB+HC\right)\)
\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)
\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)
\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)
\(BC=HB+HC=40\) (cm)
\(AC=\sqrt{BC^2-AB^2}=32\) (cm)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)