cho 2 số nguyên tố > 3 . CMR trong 3 số đó luôn có 2 số có tổng hoặc hiệu chia hết cho 12
cho 2 số nguyên tố > 3 . CMR trong 3 số đó luôn có 2 số có tổng hoặc hiệu chia hết cho 12
(các bạn nhớ giải đầy đủ nha)
cmr trong 3 số nguyên tố >3 luôn có hai số mà tổng hoặc hiệu chia hết cho 12
dễ mà cũng tra!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
๖ŃĞÚ۶
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích?
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
HELP ME QUICKLY
cho 2 số nguyên tố > 3 . CMR trong 3 số đó luôn có 2 số có tổng hoặc hiệu chia hết cho 12
(các bạn nhớ giải đầy đủ nha)
CMR giữa ba số nguyên tố lớn hơn 3 luôn luôn tìm được hai số có tổng hoặc hiệu chia hết cho 12
Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.
Ta chia 4 số dư trên thành 2 nhóm:
+ Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.
+ Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.
Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.
=> Tổng của chúng chia hết cho 12.
Trong 3 số thì ít nhất phải có 2 số có cùng số dư.
=> Hiệu của chúng chia hết cho 12.
Cho 3 số nguyên tố >3 .CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 12
Cho 3 số nguyên tố lớn hơn 3.CMR:trong 3 số nguyên tố đó tồn tại 2 số có tổng hoặc hiệu chia hết cho 12
bạn vào câu hỏi tương tự tham khảo nhé !