cho n là 1 số tự nhiên lẻ. Chứng minh 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23
M.n giúp em vs ạ
cho n là 1 số tự nhiên lẻ. Chứng minh 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23
+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)
=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
+ ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23
Cho n là số tự nhiên lẻ. Chứng minh rằng \(24^n+1\)chia hết cho 25 nhưng ko chia hết cho 23
- Vì n là số tự nhiên lẻ
=> 24n có tận cùng là 24
=> 24n + 1 có tận cùng là 24 + 1 = 25
Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)
- Vì 24 : 23 = 1 (dư 1)
=> 24n : 23 cũng sẽ dư 1
=> 24n + 1 : 23 sẽ có dư là 2
=> 24n + 1 sẽ không chia hết cho 23 (2)
Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ
1) Cho n là số tự nhiên lẻ. Chứng minh rằng :
24nn+1 chia hết cho 25 nhưng không chia hết cho 23
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
bài 1. Tổng các số tự nhiên từ 1nđến 154 có chia hết cho 2 hay ko ? có chia hết cho 5 hay ko ?
bài 2. cho A = 119 + 118 + 117 + .....+ 11 + 1 . Chứng minh rằng A chia hết cho 5 .
bài 3. Chứng minh rằng vs mọi số tự nhiên n thì n2 + n + 6 ko chia hết cho 5 .
bài 4 . Trong các số tự nhiên nhỏ hơn 1000 , có bao nhiêu số chia hết cho 2 nhưng ko chia hết cho 5 ?
bài 5. Tìm các số tự nhiên chia cho 4 thì dư 1 , còn chia cho 25 thì dư 3 .
bài 6. Tìm các số tự nhiên chia cho 8 thì dư 3 , chia cho 125 thì dư 12 .
NHANH LÊN NHA TRONG NGÀY HÔM NAY MK CẦN GẤP , CẦN LẮM LUÔN M/N GIÚP MK NHA !!!!!!!!!!!!!!
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
MÌNH THẤY NGÀY 20/9/2017 NÊN CHẮC LÀ BẠN ĐÃ CÓ CÂU TRẢ LỜI
ÁC BẠN GIÚP MK NHA BIÊT CHỖ NÀO GIẢI CHỖ ĐÓ NHA NẾU KO BT THÌ KO CẦN GIẢI HẾT CX ĐC NHƯNG GIÚP MK NHA
Chứng minh rằng nếu a là một số lẻ ko chia hết cho 3 thì a2 - 1 chia hết cho 6
Giúp mik vs ạ
Tham khảo link này : https://h.vn/hoi-dap/question/63173.html
Do 6= 2.3
Nên a.2 -1 chia hết cho 2 và 3 mà a.2 có tận cùng là chữ số lẻ nên a.2-1 chia hết cho 2
=> a2 -1 chia hết cho 3
Vậy a2-1chia hết cho 6
Ta có:
a là số lẻ
⇒ a2 là số lẻ
⇒ a2 - 1 là số chẵn
⇒ a2 - 1 ⋮ 2
Mà a không chia hết cho 3
⇒ a2 chia 3 dư 1
⇒ a2 - 1 ⋮ 3
⇒ a2 - 1 ⋮ 2;3
⇒ a2 - 1 ⋮ 6
Vậy nếu a là một số lẻ không chia hết cho 3 thì a2 - 1 chia hết cho 6 ( ĐPCM )
Chứng minh rằng vs mọi số tự nhiên N thì 60n + 45 chia hết cho 15 nhưng ko chia hết cho 30 .
Nếu chia hết cho 15 mà không chia hết cho 30 thì số đó không chia hết cho 2
mà với mọi só tự nhiên n sẽ luôn có chữ số tận cùng là 5 vì 60n có hàng đơn vị của 60 là 0 mà 0 nhân với bất kì số nào cũng bằng 0 nên 60n luôn có đuôi bằng 0 + đuôi 5 của 45 thì ta có đuôi 5
Chia hết cho 15 nghĩa là chia hết cho 5 và 3 mà ( 60n + 45 ) chia hết cho 5 và trong tổng 60n + 45 thì 60n và 45 cùng chia hết cho 3 nên suy ra 60n + 45 luôn luôn chia hết cho 15 VỚI MỌI N THUỘC SỐ TỰ NHIÊN KHÁC 0
Cho n là 1 số tự nhiên lẻ . Cmr : \(24^n+1\) chia hết cho 25 nhưng không chia hết cho 23
+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)
vì N là 1 số tự nhiên lẻ
\(\Rightarrow24^n\)có chử số tận cùng là 24
\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)
bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.