Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\). Tính y
Cho\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Và xyz=810
Tìm x, y, z
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}.\frac{x}{2}.\frac{x}{2}=\frac{y}{3}.\frac{y}{3}.\frac{y}{3}=\frac{z}{5}.\frac{z}{5}.\frac{z}{5}=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)
=> \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}=\frac{810}{30}=27\)
=> \(\hept{\begin{cases}x^3=27.8=6^3\\y^3=27.27=9^3\\z^3=27.125=15^3\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Vậy ...
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
Cách làm như sau:
Nhân các tử vs nhau, các mẫu vs nhau ta đc xyz/2*3*5=810/30=27
=> x=27*2=...
y=27*3=...
z=27*5=...
Đặt x/2 = y/3 = z/5 là k .
=>x = 2k ; y = 3k ; z = 5k.
Thay x=2k,y=3k,z=5k vào x.y.z = 810 ta được :
x.y.z = 810
hay 2k . 3k . 5k = 810
30k3 = 810
=> k3 = 27
k3 = 33
=> k = 3
=> x = 2.3 = 6
y = 3.3= 9
z = 5.3 = 15
Tìm x,y,z biết: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=810
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
Tìm x,y,z
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
Nhằm tạo công ăn việc làm
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=810:30=27\)
\(\Rightarrow k=3\)
Với \(k=3\)ta có
\(\hept{\begin{cases}x=2\cdot3\\y=3\cdot3\\z=5\cdot3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}}\)
Vậy..................
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Thay \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)và \(xyz=810\)
Ta có : \(2k.3k.5k=810\)
\(\left(2.3.5\right).\left(k.k.k\right)=810\)
\(30.k^3=810\)
\(k^3=810:30\)
\(k^3=27\)
\(k=3\)
Vì \(k=3\)
Ta có : \(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Trả lời:
y=3
*Tham khảo cách làm của bạn Kaito Kid!
Cho \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và xyz=810. Tìm x
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
=> x = 2k
y = 3k
z = 5k
xyz = 2k . 3k . 5k = 810
30 k3 = 810
=> k3 = 810 : 30 = 27
=> k = 3
Vì đề bài chỉ cần giá trị x nên
Với k = 3 => x = 6
Vậy x = 6
Tim x;y;z: \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)và xyz=810
ta có : x/2=y/3=z/5
đặt x/2=y/3=z/5=k
=> x=2k ; y=3k ; z=5k
mà x.y.z=810
=> 2k.3k.5k=810
=> k3.(2.3.5)=810
=> k3.30=810
=> k3 =27
=> k=3
+,x=2k => x=2.3=6
+, y=3k => y=3.3=9
+, z=5k => z=5.3=15
Vậy x=6 ; y=9 ; z=15.
Click vào đây nhé :
Câu hỏi của magic - Toán lớp 7 - Học toán với OnlineMath
Tifm x,y,z biết:
a)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=32
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
b, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) =>\(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
=> xyz=2k.3k.5k=810
=> 30k3=810 =>k3=27 =>k=3
=>\(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x-3y+z=6
\(b.\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
\(c.\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+3y-z=50
\(d.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
Tìm x, y, z biết:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) Và \(xyz=810\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)(2)
thay (2) vào (1), ta được:
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)
từ đó
\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)
vậy x=6; y=9; z=15
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{xyz}{2.3.5}=\frac{810}{30}=27\)
Suy ra:
\(\frac{x}{2}=27\Rightarrow x=27.2=54\)
\(\frac{y}{3}=27\Rightarrow y=27.3=81\)
\(\frac{z}{5}=27\Rightarrow z=27.5=135\)
KL