Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công Tài
Xem chi tiết
Nguyễn Anh Duy
5 tháng 11 2016 lúc 21:22

Do \(ab+1>3\)

Nên \(ab+1\) là số lẻ

Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn

Suy ra \(a=2\) hoặc \(b=2\)

+) Khi \(a=2\)

Nếu \(b\) chia \(3\)\(1\) thì \(7a+b=14+b\) chia hết cho \(3\) (Loại) Nếu \(b\) chia \(3\) \(2\) thì \(ab+1=2b+1\) chia hết cho \(3\) (Loại) Vậy \(b\)chia hết cho \(3\)
Suy ra: \(b=3\)
+) Khi \(b=2\)
Cũng xét tương tự bạn nhé!
Các cặp số \(\left(3;2\right)\) 
Quận Hoàng Đăng
Xem chi tiết
ʚDʉү_²ƙ⁶ɞ‏
Xem chi tiết
tran quoc huy
Xem chi tiết

diendantoanhoc.net 

Bn mở cái này là có

chaubaopham
Xem chi tiết
Ngọc Trúc
Xem chi tiết
Nguyễn Quốc bảo
15 tháng 11 2016 lúc 20:16

cho xin thì bảo bài cho

ẩn người chơi
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 23:50

Lời giải:

Phản chứng. Giả sử 2 số đó không nguyên tố cùng nhau.
Gọi $d=ƯCLN(5a+2b, 7a+3b), d> 1$

$\Rightarrow 5a+2b\vdots d; 7a+3b\vdots d$

$\Rightarrow 5(7a+3b)-7(5a+2b)\vdots d$

$\Rightarrow b\vdots d$

Mà $5a+2b\vdots d$ nên $5a\vdots d$

Vì $(a,b)=1$ nên $(a,d)=1$

$\Rightarrow 5\vdots d$. Mà $d>1$ nên $d=5$

$5a+2b\vdots 5\Rightarrow 2b\vdots 5\Rightarrow b\vdots 5$

$$7a+3b\vdots 5; b\vdots 5\Rightarrow 7a\vdots 5\Rightarrow a\vdots 5$

$\Rightarrow a,b\vdots 5$ (vô lý)

Vậy điều giả sử là sai. Tức 2 số đó ntcn.

 

Nguyễn Hoàng Thiên Hương
Xem chi tiết
Nguyễn Thị Ma
Xem chi tiết