cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a+b+c\ne0\right)\)
tính M = \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
1. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2003\) . Tính b,c
2. CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0\). Tính \(M=\frac{a^3b^2c^{1930}}{b^{1935}}\)
Easy mà sao còn phải hỏi? Kiến thức cơ bản của sgk đủ giải rồi! =))
1)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{2003+b+c}{b+c+2003}=1\Rightarrow a=b=c=2003\)
2) Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
Từ đó suy ra: \(\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\) (do a = b =c nên ta thế a, c = b)
Đó đó: \(M=\frac{a^3b^2c^{1930}}{b^{1935}}=\frac{b^3b^2b^{1930}}{b^{1935}}=1\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{a}{a}\)và a + b + c \(\ne0\). Tính giá trị của \(M=\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Vì \(a+b+c\ne0\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^2.b^{1930}}{b^{1935}}=\frac{b^{3+2+1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Vậy \(M=1\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}vàa+b+c\ne0\) Tính M=\(\frac{a^2b^2c^{1930}}{b^{1935}}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a = b = c (a; b; c khác 0 vì b; a; c là các mẫu số)
=> \(M=\frac{a^2b^2c^{1930}}{b^{1935}}=\frac{b^2b^2b^{1930}}{b^{1935}}=\frac{b^{1934}}{b^{1935}}=\frac{1}{b}\)
Mà a = b = c
=> \(M=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
a) cho \(a+b+c=2\).tính \(A=\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(a+c\right)^2}\)
b)cho \(a+b+c=0\).tính \(B=\frac{a^2+b^2+c^2}{\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2}\)
c) cho \(a+b+c=0;abc\ne0\)tính \(M=\frac{a^3}{b^2+c^2-a^2}+\frac{b^3}{c^2+a^2-b^2}+\frac{c^3}{a^2+b^2-c^2}\)
ý a bạn có chắc viết đề bài đúng không
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{c}{a}\)và a+b+c\(\ne\).Tính giá trị của M-\(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Rightarrow\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^3.b^{1930}}{b^{1933}}=1\)
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Ai giải giúp mình bài 1 với bài 4 trước đi
Cho \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\) và a+b+c \(\ne\)0.Tính giá trị của M=\(\frac{a^3.b^2.c^{1930}}{b^{1935}}\)
Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^3.b^2.c^{1930}}{b^{1935}}=\frac{b^{1935}}{b^{1935}}=1\)
Áp dụng tỉ dãy số bằng nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{\left(a+b+c\right)}{b+c+a}=1\Rightarrow a=b=c\)
Khi đó: \(\frac{a^3.b^2.c^{1930}}{b^{1935}}\Leftrightarrow\frac{b^{1935}}{b^{1935}}=b^{1935}:b^{1935}=1\)
theo bài ra và theo tc của dãy tỉ số bằng nhau ta có :a/b=b/c=c/a suy ra a+b+c/b+c+a=1
suy ra a=b=c suy ra a^3*b^2*c^1930=b^1935 suyra b^1935/b^1935=1
Cho biết : \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{a}\)và a + b + c khác 0
Tính M = \(\frac{a^3.b^2.c^{1930}}{c^{1935}}\)
theo tích chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
ta có\(\frac{a^3.b^2.c^{1930}}{c^{1935}}=\frac{c^3.c^2.c^{1930}}{c^{1935}}=\frac{c^{1935}}{c^{1935}}=1\)
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)