Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Khánh Ngọc
Xem chi tiết
Nguyễn Thị Thùy
Xem chi tiết
Minh
Xem chi tiết
Duy Tran
Xem chi tiết
Ha bui hong quan
Xem chi tiết
Gia Nhi Trương
Xem chi tiết
Phan Hoàng Linh Ngọc
Xem chi tiết
Dionysus Bacchus
27 tháng 11 2017 lúc 21:31

mình vẽ hình ko dc chuẩn cho lắm bạn vẽ vào vở cho thẳng nha:))

điểm A đối xứng với B qua EF

điểm N đối xứng với M qua EF

điểm C đối xứng với D qua EF

Chúc bạn học tốt nha ok

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2017 lúc 15:55

a) Do AM = DN Þ MADN là hình bình hành

⇒   D ^ = A M N ^ = E M B ^ = M B C ^  

Ta có DMPE = DBPE nên EP = FP. Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB Ç EF = P; Lại có P trung điểm BM, P là trung điểm EF, MB ^ EF.

Þ  MEBF là hình thoi.

c) Để BNCE là hình thang cân thì C N E ^ = B E N ^  

C N E ^ = D ^ = M B C ^ = E B M ^  nên DMEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì  A B C ^ = 60 0

Tran Thi Xuan
Xem chi tiết
Dương công việt anh
14 tháng 12 2017 lúc 13:32

 BÀI 1: Gọi I là giao điểm của EF và AB 
Vì EF là đường trung trực của MB nên BE = BF 
Xét hai tam giác BEI và BFI thì chúng bằng nhau ( t.hợp ch-cgv) 
=> IE = IF; EF vuông góc AB 
=> E và F đối xứng nhau qua AB 
* xét tứ giác MEBF có : 
- EM = EB; FM = FB ( È là đường trung trực của MB) 
mà E và F đối xứng nhau qua AB nên ta c/m được hai tam giác BEI và BFI bằng nhau ( t.hợp ch-cgv) 
=> EM = EB = FM = FB 
=> MEBF là hình thoi 
*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC 
để EBCN là hình thang cân thì EN = BC