chứng minh rằng : l x+y l < hoặc bằng l x l + l y l
Giúp mik với:
tìm x,y thỏa mãn biết:
a, l 5x+1 l + l 6y-8 l nhỏ hơn hoặc bằng 0
b, l x+2y l + l 4y-3 l nhỏ hơn hoặc bằng 0
c, l x-y+2 l + l 2y+1 l nhỏ hơn hoặc bằng 0
mỗi câu 1 tick
Bài 1: Cho x,y thuộc Q. Chứng tỏ rằng:
a) l x+y l \(\le\) l x l +l y l
b) l x-y l \(\ge\) l x l -l y l . Từ bài làm trên, tìm giá trị nhỏ nhất của biểu thức: A= l x-2001 l + l x-1 l
Bài 2: Cho a + b + c = a2 + b2 + c2 = 1 và x:y:z= a:b:c. Chứng minh rằng: (x+y+z)2 = x2 + y2 z2
Bài 1: Cho x,y thuộc Q. Chứng tỏ rằng:
a) l x+y l \(\le\) l x l +l y l
b) l x-y l \(\ge\) l x l -l y l . Từ bài làm trên, tìm giá trị nhỏ nhất của biểu thức: A= l x-2001 l + l x-1 l
Bài 2: Cho a + b + c = a2 + b2 + c2 = 1 và x:y:z= a:b:c. Chứng minh rằng: (x+y+z)2 = x2 + y2 z2
Cho x,y thuộc Q. Chứng tỏ rằng:
a) l x+y l \(\le\) l x l +l y l
b) l x-y l \(\ge\) l x l -l y l . Từ bài làm trên, tìm giá trị nhỏ nhất của biểu thức: A= l x-2001 l + l x-1 l
Ta có: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+y^2+2.\left|x\right|.\left|y\right|\)
\(\Leftrightarrow2xy\le\left|2xy\right|\)( BĐT luôn đúng )
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
các bn ơi giúp mk với
Đề bài: cho x,y thuộc tập hợp số hữu tỉ. chứng minh rằng
l x+yl nhỏ hơn hoặc bằng lxl+lyl
Với x,y thuộc tập hợp số hơux tỉ
Ta có: x nhỏ hơn hoặc bằng lxl ;-x nhỏ hơn hoặc bằng lxl; y nhỏ hơn hoặc bằng lyl ;-y nhỏ hơn hoặc bằng lyl
Suy ra:x+y nhỏ hơn hoặc bằng lxl +lyl (1) ; -x-y nhỏ hơn hoặc bằng lxl+lyl
Suy ra:(x+y)lớn hơn hoạc bằng-(lxl+lyl) (2)
Từ (1) và (2) suy ra;-(lxl+lyl)nhỏ hơn hoặc bàng x+ynhor hơn hoặc bằng lxl+lyl
Vậy lx+yl nhỏ hơn hoặc bằng lxl+lyl
Chúc bn học tốt
Bài 1: Cho x,y thuộc Q. Chứng tỏ rằng:
a) l x+y l \(\le\) l x l +l y l
b) l x-y l \(\ge\) l x l -l y l . Từ bài làm trên, tìm giá trị nhỏ nhất của biểu thức: A= l x-2001 l + l x-1 l
Bài 2: Cho a + b + c = a2 + b2 + c2 = 1 và x:y:z= a:b:c. Chứng minh rằng: (x+y+z)2 = x2 + y2 z2
Bai 3: Tìm x,y biết \(\frac{x^2+y^2}{10}\)= \(\frac{x^2—2y^2}{7}\) và x4y4 = 81
Bài 4: Với giá trị nào của x thì A= l x-3 l + l x-5 l + l x-7 l đạt giá trị nhỏ nhất
Bài 5: Với giá trị nào của x thì A= l x-1 l + l x-2 l + l x-3l + l x-5 l đạt giá trị nhỏ nhất
Cho x, y thuộc Q , chứng minh
a, l x+yl < l xl + l y l
b, l x-y l > l x l - l y l
nhanh tích nhé mai nụp rùi
* yuko *
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng:
\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
cho x, y là 2 số khác 0 thỏa mãn (x+y)^5 = x^5 +y^5
chứng minh rằng x ,y là 2 số đối nhau
Chia 2 vế cho \(x^5\) ta được
\(\left(1+\dfrac{y}{x}\right)^5=1+\left(\dfrac{y}{x}\right)^5\)
Đặt \(\dfrac{y}{x}=a\) thì ta có:
\(\left(1+a\right)^5=1+a^5\)
\(\Leftrightarrow a^4+2a^3+2a^2+a=0\)
\(\Leftrightarrow a\left(a+1\right)\left(a^2+a+1\right)=0\)
\(\Leftrightarrow a=-1\)
\(\Leftrightarrow\dfrac{y}{x}=-1\)
\(\Leftrightarrow y=-x\left(ĐPCM\right)\)