Tìm x,y thuộc Z thỏa
(x-2)^2+(y+16)^2016=0
1) Tìm x;y thuộc Z thỏa :
\(\left(x-2\right)^2+\left(y+16\right)^{2016}=0\)
Có: \(\left(x-2\right)^2\ge0;\left(y+16\right)^{2016}\ge0\forall x;y\)
Mà theo đề bài: (x - 2)2 + (y - 16)2016 = 0
\(\Rightarrow\begin{cases}\left(x-2\right)^2=0\\\left(y+16\right)^{2016}=0\end{cases}\)\(\Rightarrow\begin{cases}x-2=0\\y+16=0\end{cases}\)\(\Rightarrow\begin{cases}x=2\\y=-16\end{cases}\)
Vậy x = 2; y = -16
Tìm x,y thuộc Z thỏa
a) (x-2)2 + ( y + 6 )2016 = 0
b) 15x + 20y = 20162017
Do (x-2)2 >= 0 (1) (lớn hơn hoặc bằng)
(y+6)2016 >= 0 (2)
Mặt khác a) (x-2)2 + ( y + 6 )2016 = 0
nên kết hợp (1) và (2) ta được :
(x - 2)2 = 0 => x - 2 = 0 => x = 2
và (y+6)2016 = 0 => y + 6 = 0 => y = -6
Vậy x = 2 và y =-6
Tìm x,y thuộc Z thỏa
a) (x-2)2 + ( y + 6 )2016 = 0
b) 15x + 20y = 20162017
a) do (x-2)2\(\ge0\) , (y+6)2\(\ge0\) mà (x-2)2+(y+6)2=0
nên dấu "=" xảy ra khi chỉ khi (x-2)2=0, (y+6)2=0
=> x=2, y=-6
vậy x=2, y=-6
Cho x, y, z thuộc Z thỏa mãn x-y+z=2016. Tìm x, y, z, biết:
\(x^3-y^3+z^3=2017^2\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
Tìm z,y
a, (x-2)2016 + I y2 - 9I2017 = 0
b,25 - y2 = 8.(x - 2016)2 (x,y thuộc Z)
c, x - xy + y = 10 (x;y thuộc Z)
Cho x>0,y>0,z>0 thỏa mãn \(x^{2016}+y^{2016}+z^{2016}=3\) . Tìm GTLN của biểu thức P = \(x^2+y^2+z^2\)
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(x^{2016}+\underbrace{1+1+...+1}_{1007}\geq 1008\sqrt[1008]{x^{2016}}=1008x^2\)
Thực hiện tương tự với \(y,z\) và cộng theo vế, thu được:
\(x^{2016}+y^{2016}+z^{2016}+3021\geq 1008P\Leftrightarrow 1008P\leq 3024\)
\(\Rightarrow P\leq 3\) tức \(P_{\max}=3\)
Dấu bằng xảy ra khi \(x=y=z=1\)
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
Câu 4 : Tìm số x,y,z thỏa mãn: ( x - 5)2 + ( y-2)4 + ( z+3)2016=0
Nhận xét (x- 5)2 >= 0 với mọi x
(y- 2)4 >= 0 với mọi y
(z+ 3)2016 >= 0 với mọi z
=> (x- 5)2+ (y- 2)4+ (z+ 3)2016= 0
<=> \(\hept{\begin{cases}x-5=0\\y-2=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z