Đa thức 20x3y2+10x2y4+25xy3 chia hết cho đa thức
Tìm các số nguyên x để đa thức 3\(x^3+10x^2-4\) chia hết cho đa thức 3x+1
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}
tìm a và b để đa thức x3+ax2+2x+b chia hết cho đa thức x2+x+1
b\ Tìm số a để đa thức x3 + 3x2 + 5x +a chia hết cho đa thức x+ 3
bằng 15 bạn ơi. chắc chắn 100% đúng tick cho mình nha. thanks
a, làm tính chia: (x^6-2x^5+2x^4+6x^3-4x^2)/6x^2
b,tìm n để đa thức 3x^3+10x^2-5+n chia hết cho đa thức 3x+1
tìm a và b sao cho 2 đa thức f(x)=4x^3-3x^2+2x+2a+3b và g(x)=5x^4-4x^3+3x^2-2x-3a+2b cùng chia hết cho đa thức (x-3)
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...
Với giá trị nào của a và b thì đa thức \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\)
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
a)phát biểu các quy tắc nhân đơn thức với đa thức ,nhân đa thức với đa thức
b) viết 7 hàng đẳng thức đáng nhớ
c)Khi nào thì đơn thức A chia hết cho đơn thức B
d) khi nào thì đa thức A chia hết cho đơn thức B
e) khi nào thì đa thức A chia hết cho đa thức B
f)Nêu các phương pháp phân tíchđa thức thành nhân tử
g) phát biểu các quy tắc chia đơn thức cho đơn thức , chia đa thức cho điện thức
1. Phát biểu các qui tắc nhân đơn thức với đa thức, nhân đa thức với đa thức.
- Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
- Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
2. Viết bảy hằng đẳng thức đáng nhớ.
Bảy hằng đẳng thức đáng nhớ:
\(1,\left(A+B\right)^2=A^2+2AB+B^2\)
\(2,\left(A-B\right)^2=A^2-2AB+B^2\)
\(3,A^2-B^2=\left(A-B\right)\left(A+B\right)\)
\(4,\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
\(5,\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)
\(6,A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
\(6,A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)
3. Khi nào thì đơn thức A chia hết cho đơn thức B?
Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
4. Khi nào thì đa thức A chia hết cho đơn thức B?
Khi từng hạng tử của đa thức A đều chia hết cho đơn thức B thì đa thức A chia hết cho đơn thức B.
5. Khi nào thì đa thức A chia hết cho đa thức B?
Khi đa thức A chia hết cho đa thức B được dư bằng 0 thì ta nói đa thức A chia hết cho đa thức B.
giá trị nguyên của x<0 để giá trị của đa thức
A=12x^3-7x^2-14x+14
chia hết cho giá trị của đa thức B=4x-5
giúp mình với đang cần gấp
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
A=12x^3-7x^2-14x+14
PT: (\(-7x^2-14x+14\))+12\(x^3\)
-7(x^2+2x+1)+12x^3+21 do(14=-7+21)
-7\(\left(x+1\right)^2\)+12x^3+21
-7\(\left(x+1\right)^2\)+12(x^3+1)+9
=>x=-1 để A đạt GTNN
Mà để A chia hết cho B thì B phải thuộc ước của 9 nên x=-1
Xác định a và b sao cho đa thưc P(x)=ax^4+bx^3+1 chia hết cho đa thức Q(x)=(x-1)^2
bớt xàm đi Đỗ Mai Linh ơi.ng ta chat hay ko vc ng ta.đây là nơi để học chứ éo pk nơi để ns linh tinh trên này đâu
Cách 1 : Đặt \(f(x)=(x-1)^2(ax^2+mx+n)\)
Ta có : \(ax^4+bx^3+1=ax^4+(m-2a)x^3+(n-2m+a)x^2+(m-2n)x+n\)
=> \(\hept{\begin{cases}m-2a=b\\n-2m=0\\m-2n=0,n=1\end{cases}}\Leftrightarrow\hept{\begin{cases}n=1\\m=2\\a=3,b=-4\end{cases}}\)
Vậy a = 3 và b = -4 là giá trị phải tìm