tìm x y z biết (x^2+y^2):10= (x^2-2y^2):7 va x^4 x y^4
b2:tìm x,y,z
a) x/3=y/4=z/5 va 2x+3y+5z=86
b) x/3=y/4; y/6=z/8 va 3x-2y-z=13
c) x/2=y'3=z/4 va xy+yz+zx=104
b3:tìm x,y,z
a)x/3=y/7=z/2 va 2x^2 +y^2 +3z^2=316
b)x:y:z=2:5:7 va 3x+2y-z=27
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Sửa lại bài 3a
Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)
Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)
1/tính giá trị x+y biết x-3/y-5=3/5 và y-x=4
2/tìm x biết 15-x/7=x+7/4
3/tìm x,y,z biết 4/3x-2y=3/2z-4x=2/4y-3z và x+y-z=-10
4/tìm x,y,z biết x-1/2=y+3/4=z-5/6 và 5z-3x-4y=50
mấy bạn giúp mình nha mình cần gấp khoảng 1 giờ đã nộp bài gồi
Biết x,y,z thỏa mãn :
x-1/2=y-2/3=z-3/4 va x-2y+3z=-10
Khi đó x+y+z=?
Đặt x-1/2=y-2/3=z-3/4=K=)) x=2k+1
y=3k+2
z=4k+3
=))x-1-y-2+z-3/2-3+4=2k+1-3k+2+4k+3/2-3+4
=3k+2=10
=))3k=12
=))k=4
Vậy 2k+1=4=))x=9
3k+2=4=))y=14
4k+3=4=))z=19
Khi đó:x+y+z=9+14+19=42
Biết x ;y;z thỏa mãnx-1/2=y-2/3=z-3/4 va x-2y+3z=-10
Khi do x;y;z =?
tìm x,y,z biết \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z-4}\)va x+y+z=17
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
tìm x , y , z biết
a. 3/7 x = 8/13 y = 6/19 z va 2x-y-z = -6
b. x/4 = 2y/5 = 3z/6 va x^2-3y^2+2z^2 = 325
a) đặt \(\dfrac{3}{7x}=\dfrac{8}{13y}=\dfrac{6}{19z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}\\y=\dfrac{8}{13k}\\z=\dfrac{6}{19k}\end{matrix}\right.\)
Thay vào 2x -y-z=-6, ta được:
\(2\cdot\dfrac{3}{7k}-\dfrac{8}{13k}-\dfrac{6}{19k}=-6\Leftrightarrow\left(\dfrac{6}{7}-\dfrac{8}{13}-\dfrac{6}{19}\right)\cdot\dfrac{1}{k}=-6\Leftrightarrow\dfrac{1}{k}=\dfrac{5187}{64}\Leftrightarrow k=\dfrac{64}{5187}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}=\dfrac{2223}{64}\\y=\dfrac{8}{13k}=\dfrac{399}{8}\\z=\dfrac{6}{19k}=\dfrac{819}{32}\end{matrix}\right.\)
Vậy.............
{số vẫn không đẹp mấy nhỉ T_T!!!}
\(\dfrac{3}{7}.x=\dfrac{8}{13}y=\dfrac{6}{19}z\)
\(\Rightarrow\)\(\dfrac{x}{\dfrac{7}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\Rightarrow.\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\)
AD tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}=\dfrac{2x-y-z}{\dfrac{14}{3}-\dfrac{13}{8}-\dfrac{19}{6}}=\dfrac{-6}{\dfrac{-3}{24}}=48\)
\(\Rightarrow\)x=112;y=78;z=152
a) không hiểu, khoảng trắng đó là ám chỉ cái gì???: x,y,z ở tử hay mẫu?
b) mấy bài rối rối thế này cứ đặt k cho an toàn
đặt \(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{3z}{6}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=\dfrac{5k}{2}\\z=2k\end{matrix}\right.\)
thay vào \(x^2-3y^2+2z^2=325\), được:
\(\left(4k\right)^2-3\left(\dfrac{5k}{2}\right)^2+2\left(2k\right)^2=325\Leftrightarrow16k^2-\dfrac{75}{4}k^2+8k^2=325\Leftrightarrow\dfrac{21}{4}k^2=325\Leftrightarrow k=\pm\dfrac{10\sqrt{273}}{21}\)
{sao số xấu vậy nhỉ?}
\(\Rightarrow\left\{{}\begin{matrix}x=4k=\pm\dfrac{40\sqrt{273}}{21}\\y=\dfrac{5k}{2}=\pm\dfrac{25\sqrt{273}}{21}\\z=2k=\dfrac{20\sqrt{273}}{21}\end{matrix}\right.\)
(bạn xem tớ có làm đúng đề của bạn không??)
THANK YOU!!
1)tìm x,y,z biết
a) x/2=y/3=z/4 va x^2-y^2+2z^2=108
b)x-1/2=y-2/3=z-3/4 va x-2y^2+2x=14
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2-y^2+2z^2=108\)
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\dfrac{108}{27}=4\)
\(\dfrac{x}{2}=4\Rightarrow x=4.2=8\)
\(\dfrac{y}{3}=4\Rightarrow y=4.3=12\)
\(\dfrac{z}{4}=4\Rightarrow z=4.4=16\).
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\dfrac{108}{27}=4\)
\(x=2.4=8\)
\(y=3.4=12\)
\(z=4.4=16\)
cây b đặt k ra nhé
=> x = 2k + 1
tương tự rồi thế vào tính k
Tìm x,y,z biết: x-1/2=y-2/3=z-3/4 và x-2y+3z= -10. Kết quả x,y,z là X=______;Y=______; Z=______?