Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Siêu Nhân Lê
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
alibaba nguyễn
17 tháng 7 2018 lúc 16:09

\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)

\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(\Rightarrow3\left(x-3\right)^2\le33\)

\(\Leftrightarrow\left(x-3\right)^2\le11\)

\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)

Thế lần lược vô giải tiếp sẽ ra

alibaba nguyễn
17 tháng 7 2018 lúc 16:17

Áp dụng với 6y^2 thì còn ngắn hơn nữa

Trần Hữu Ngọc Minh
Xem chi tiết
Nguyễn Thiều Công Thành
6 tháng 9 2017 lúc 14:18

<=>3(x2-6x+9)+6y2+2z2+3y2z2=33

<=>3(x-3)2+6y2+2z2+3y2z2=33

nhận thấy 3(x-3)2;6y2;3y2z2 chia hết cho 

=>2z2 chia hết cho 3=>z chia hết cho 3

giả sử trong 4 số đó không số nào =0

=>\(3\left(x-3\right)^2\ge3;6y^2\ge6;2z^2\ge18;3y^2z^2\ge27\Rightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2\ge54\)(vô lí)

với x-3=0

=>x=3

pt trở thành 6y2+2z2+3y2z2=6

<=>(3y2+2)(z2+2)=10

với y=0

=>3(x-3)2+2z2=33 (đến đây thid dễ rồi)

với z=0=>3(x-3)2+6y2=33

=>(x-3)2+2y2=11

Bạch Lương Phú
Xem chi tiết
Aug.21
15 tháng 4 2019 lúc 10:16

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

Nguyễn Minh Hoàng
Xem chi tiết
Ngô Chi Lan
14 tháng 6 2021 lúc 11:12

Ta có:\(3x^2-18y^2+2z^2+3y^2z^2-18x=27\)

\(\Leftrightarrow3x^2-18y^2+2z^2+3y^2z^2-18x-27=0\)

\(\Leftrightarrow3\left(x^2-6x+9\right)-18y^2+2z^2+3y^2z^2-54=0\)

\(\Leftrightarrow3\left(x-3\right)^2-18y^2+2z^2+3y^2z^2=54\)

Để pt có nghiệm nguyên thì:\(z^2⋮3\) \(\Rightarrow z⋮3\)\(\Rightarrow z^2⋮9\)\(\Rightarrow z^2\ge9\)

\(\Leftrightarrow3\left(x-3\right)^2+3y^2\left(z^2-6\right)+2z^2=54\)

\(\Rightarrow54=3\left(x-3\right)^2+3y^2\left(z^2-6\right)+2z^2\ge3\left(x-3\right)^2\le12\)

\(\Rightarrow y^2\le4\Rightarrow\hept{\begin{cases}y^2=1\\y^2=4\end{cases}}\)

Với \(y^2=1\Rightarrow y=1\)pt có dạng :

\(3\left(x-3\right)^2+5z^2=72\)

\(\Leftrightarrow5z^2\le72\)

\(\Leftrightarrow z^2=9\Leftrightarrow z=3\)

\(\Rightarrow x=6\)

Với \(y^2=4\Rightarrow y=2\)pt có dạng:

\(3\left(x-3\right)^2+14z^2=126\)

\(\Leftrightarrow14z^2\le126\)

\(\Leftrightarrow z^2\le9\Rightarrow z=3\)

\(\Rightarrow x=3\)

Vậy ......

Khách vãng lai đã xóa
Minh Nguyễn Quang
Xem chi tiết
Akai Haruma
30 tháng 7 lúc 22:12

Lời giải:

PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$

$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$

$\Rightarrow 2z^2\vdots 3$

$\Rightarrow z\vdots 3$

Lại có:

$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$

$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)

Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$

Nếu $z=0$ thì:

$3(x-3)^2+6y^2=33$

$\Leftrightarrow (x-3)^2+2y^2=11$

$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$

$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

Nếu $z=\pm 3$ thì:

$3(x-3)^2+15y^2=15$

$\Rightarrow 15y^2\leq 15$

$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow y\in \left\{\pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

 

Nguyễn Phúc Lộc
Xem chi tiết
Nguyễn Phúc Lộc
Xem chi tiết