Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Hoàng Văn Dũng
Xem chi tiết
Con Gái Họ Trần
Xem chi tiết
Milky Way
6 tháng 9 2016 lúc 21:41

 milky way lam duoc nhe . ban can minh giai bai lam chu ???

marivan2016
Xem chi tiết
Đặng Quỳnh Ngân
3 tháng 9 2016 lúc 21:03

a2 = bc 

b =ac

c2 = ab

vậy 3 số a=b=c

soyeon_Tiểu bàng giải
3 tháng 9 2016 lúc 20:59

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\)\(\Rightarrow a=b=c\)

Đinh Hải Ngọc
14 tháng 10 2016 lúc 21:30

vậy 3 số a=b=c

ko trình bày tự tìm hiểu

Diệp Thiên Giai
Xem chi tiết
Isolde Moria
19 tháng 9 2016 lúc 16:48

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\begin{cases}a=b\\b=c\\c=a\end{cases}\)

\(\Rightarrow a=b=c\)

Vậy a = b = c

Phác Trí Nghiên
Xem chi tiết
Đặng Minh Triều
12 tháng 9 2015 lúc 16:37

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

suy ra: \(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\Rightarrow a=b=c\)

Ngọc Quỳnh
Xem chi tiết
Tôn Thất Minh Huy
13 tháng 9 2015 lúc 20:18

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> \(\frac{a}{b}=1=>a=b\) (1)

=>\(\frac{b}{c}=1=>b=c\)   (2)

=>\(\frac{c}{a}=1=>c=a\)  (3)

Từ (1), (2), (3), suy ra:

\(a=b=c\)

Sorano Yuuki
Xem chi tiết
Kurosaki Akatsu
29 tháng 5 2017 lúc 19:39

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\b=a\end{cases}}\Rightarrow a=b=c\)

Trịnh Thành Công
29 tháng 5 2017 lúc 19:42

Cái phần ngoặc nhọn ấy bn làm ko hỉu mấy

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

           \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\left(1\right)\\b=c\left(2\right)\\c=a\left(3\right)\end{cases}}\)

              Từ (1) , ( 2 ) và (3) ta được: a=b=c

Nguyễn Thị Thùy Linh
Xem chi tiết
Trịnh Sảng và Dương Dươn...
2 tháng 6 2018 lúc 14:06

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

I don
2 tháng 6 2018 lúc 14:13

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

I don
2 tháng 6 2018 lúc 14:21

Bài 2:

ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(\Rightarrow S=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(S=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)

\(S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

thay số: \(S=7.\frac{7}{10}-3\)

\(S=4\frac{9}{10}-3\)

\(S=1\frac{9}{10}=\frac{19}{10}\)

mà  \(1\frac{8}{11}=\frac{19}{11}\)

\(\Rightarrow\frac{19}{10}>\frac{19}{11}\)

\(\Rightarrow S>\frac{19}{11}\)

\(\Rightarrow S>1\frac{8}{11}\)