Cho\(\frac{a}{b}=\frac{c}{d}.\) Chứng minh \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
1) Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
2) Cho\(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{a^2-d^2}{c^2-d2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)Chứng minh: \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Chào các bạn, hôm nay mình có một bài toán khá khó muốn nhờ các bạn giải giúp
a) Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Cho \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng minh: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng :\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt
cho\(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng
\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)= k ( k \(\in\)Z , k khác 0 )
=> a = bk ; c = dk
Ta có:
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Vậy nếu \(\frac{a}{b}=\frac{c}{d}\)thì \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\).Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right).cd=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abd^2=abc^2-b^2cd\)
\(\Leftrightarrow ad\left(ac-bd\right)=bc\left(ac-bd\right)\)
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta co:a^2+b^2•cd=c^2+d^2•ab=>(a+b)^2•ab=(c+d)^2•cd=>(a+b)^3=(c+d)^3=>a•(b^3)=c•(d^3)=>a/c=b^3/d^3=>a/c=b/d=>a/b=c/d. Do la dieu Phai Chung minh
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với \(a,b,c,d\ne0\). Chứng minh rằng hoặc \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
cho \(\frac{a}{b}=\frac{c}{d}\), chứng minh:
a, \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{a}{c}=\frac{b}{d}\)
=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
=>\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}=\frac{a^2}{c^2}\)(the t/c dãy TSBN) (đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\times\frac{b}{d}=\frac{ab}{cd}\left[tc\right]\Rightarrow DieuPhaiChungMinh\)
CHO \(\frac{a}{b}=\frac{c}{d}\)
CHỨNG MINH \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
\(=>\frac{a}{c}=\frac{b}{d}=>\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (1)
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(2)
Từ 1 và 2=>ab/cd=a2+b2/c2+d2