Bài 14. Cho hình vẽ
a) chứng minh AM // BN
b) Tính N1 và các góc ở đỉnh M
cho hình vẽ: biết N2=75 độ
a) Chứng minh: AM//BN
b) Tính góc N1 và các góc ở đỉnh M
1. vẽ lại hình , ghi gt và kl 2. a)chứng tỏ am//bn b)tính góc m , n1 , n2 c)kẻ mk , vuông góc với bn tại k . chứng minh : mk // ab d)mk có vuông góc với am không ? tại sao ?
Giải chi tiết và vẽ hình giúp mình ạ Bài 3 Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. M là trung điểm của BC.
a) Chứng minh AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc BC. c) Tính AM
d ) Từ M vẽ ME vuông góc AB (E thuộc AB) và MF vuông góc AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?
a) Vì \(AB=AC\) (giả thiết)
\(\Rightarrow\Delta ABC\) cân tại A
Mà \(AM\) là đường trung tuyến (giả thiết)
\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\)
b) Vì \(\Delta ABC\) cân tại A (cmt)
Mà \(AM\) là đường phân giác (cmt)
\(\Rightarrow AM\) là đường trung trực \(BC\)
\(\Rightarrow AM\perp BC\)
c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:
\(AC^2=AM^2+MC^2\) (định lí pitago)
\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)
d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:
\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)
\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MEF\) cân tại \(M\)
a, Xét tam giác ABC có : AB = AC
Vậy tam giác ABC cân tại A
Lại có M là trung điểm BC hay AM là trung tuyến
=> AM đồng thời là đường phân giác ^A
b, Xét tam giác ABC cân tại A
AM là đường trung tuyến đồng thời là đường cao
hay AM vuông BC
c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm
Theo định lí Pytago tam giác ABM vuông tại M
\(AM=\sqrt{AB^2-BM^2}=4cm\)
d, Xét tan giác AFM và tam giác AEM có :
^AFM = ^AEM = 900
AM _ chung
^FAM = ^EAM ( AM là phân giác )
Vậy tam giác AFM = tam giác AEM ( ch - gn )
=> FM = EM ( 2 cạnh tương ứng )
Xét tam giác MEF có FM = EM
Vậy tam giác MEF cân tại M
Bài 2. Cho hình vẽ bên. a) Chứng minh rằng: aa’ // bb’. b) Tính số đo các góc (khác góc bẹt) có đỉnh Q
|
a: Vì góc aMN=góc MNQ
nên aa'//bb'
b: góc PQN=180-100=80 độ=góc b'Qd'
góc b'Qd=d'QN=180-80=100 độ
Cho hình vẽ . Biết ^M1 = 100 độ , a vuông góc với c , b vuông góc với c
a, Chứng minh a//b
b, Tính các góc ở đỉnh N
a, Vì a và b cùng vuông góc với c nên a//b
a)
Ta có:
\(\begin{cases} a┷c\\ b┷c \end{cases} \)
=> a//b
b) mk ko biết hình thế nào nên ko tính dc nha, thông cảm
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh △AMB = △AMC và AM là tia phân giác của góc A.
b) Chứng minh AM BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì ? Vì sao ?
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: BM=CM=3cm
=>AM=4cm
Cho tam giác ABC có AB = AC = 5cm, BC=6cm . đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC
a) Chứng minh \(\Delta AMB=\Delta AMC\) và AM là tia phân của góc A
b) Chứng minh AM \(\perp\) BC
c) Tính độ dài các đoạn thẳng BM và AM
d) Từ M vẽ ME \(\perp\) AB ( E thuộc AB ) và MF \(\perp\) AC ( F thuộc AC ) . Tam giác MEF là tam giác gì ? Vì sao
ai làm được mình cho 10000 sao
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
ai giúp mik bài này đc ko plsssssssssssssssss
bài 1 a,tính góc ở đáy của tam giác cân biết góc ở đỉnh= 50 độ bằng a độ
b,tính góc ở đỉnh của 1 tam giác cân biết góc ở đáy bằng 50 độ bằng a độ
bài 2 : cho tam giác ABC cân tại A. lấy điểm H thuộc cạnh AC,lấy điểm K thuộc cạnh AB sao cho AH=AK.Gọi O là giao điểm của BH và CK .chứng minh rằng tam giác OBC là tam giác cân
các bạn vẽ hộ mình hình và giải hộ mình bài 2 với
Bài 1:
a)
Góc ở đáy = (180o-50o) : 2 = 65o
b)
Góc ở đỉnh = 180o - (50o x 2) = 80o
Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
HELP ME
a. Xét tam giác AMB và tam giác AMC:
AB = AC
AM chung
BM = CM (trung tuyến AM hạ từ A đến BC)
=> tam giác AMB = tam giác AMC
=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma) => BM = CM = \(\dfrac{BC}{2}\)= \(\dfrac{6}{2}\)= 3(cm) Áp dụng định lí Pi-ta-go vào tam giác ABM: AB2 = BM2 + AM2=> AM2 = AB2 - BM2 AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cm