So sánh
\(\left(-32\right)^9và\left(-18\right)^{13}\)
so sánh:
\(127^{23}và513^{18}\)
\(\left(\frac{1}{243}\right)^9và\left(\frac{1}{83}\right)^{13}\)
so sánh 2 phân số:
\(\left[\frac{1}{243}\right]^9và\left[\frac{1}{83}\right]^{13}\)
So sánh hai phân số:
\(\left(\frac{1}{243}\right)^9và\left(\frac{1}{83}\right)^{13}\)
\(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^4}\right)^9=\frac{1}{3^{4.9}}=\frac{1}{3^{36}}\)
\(\left(\frac{1}{83}\right)^{13}\frac{1}{3^{42}}\Rightarrow\left(\frac{1}{81}\right)^{13}
so sánh\(\left(-32\right)^9va\left(-18\right)^{13}\)
so sánh:
\(\left[-\frac{1}{5}\right]^9và\left[-\frac{1}{25}\right]^5\)
Ta thấy:
25^5=(5^2)^5=5^(2*5)=5^10>5^9.
=>1/5^9>1/25^5.
=>-1/5^9<-1/25^5.
=>(-1/5)^9<(-1/25)^5.
Vậy ...
So sánh :
\(\left(0,6\right)^9và\left(-0,9\right)^6\)
So sánh
\(\left(\frac{1}{15}\right)^9và\left(\frac{1}{20}\right)^7\)
So Sánh : \(\left(-32\right)^{27}\)và\(\left(-18\right)^{39}\)
Ta có: \(32^{27}=\left(2^5\right)^{27}=2^{135}\)
\(16^{39}=\left(2^4\right)^{39}=2^{156}\)
mà \(2^{135}< 2^{156}\)
nên \(32^{27}< 16^{39}\)
mà \(16^{39}< 18^{39}\)
nên \(32^{27}< 18^{39}\)
\(\Leftrightarrow-32^{27}>-18^{39}\)
\(\Leftrightarrow\left(-32\right)^{27}>\left(-18\right)^{39}\)
So sánh các số sau:
d)\(\left(-32\right)^9\)và\(\left(-18\right)^{13}\)
e)\(\left[\frac{-25}{46}\right]\)và\(\left(\frac{-25}{46}\right)^{2005}\)
d, ta có :(-32)9=-(329) ;(-18)13=-(1813)
329=32\(\times\)328=32\(\times\)(322)4=32\(\times\)10244=32\(\times\)1024\(\times\)10243
1813=18\(\times\)1812=18\(\times\)(183)4=18\(\times\)58324=18\(\times\)5832\(\times\)58323
18\(\times\)5832 >16\(\times\)5832=32\(\times\)2916>32\(\times\)1024 =58323>10243
nên 1813>329
vậy (-18)13 <(-32)9
(-32)9=-(329)
(-18)13=-(1813)
329<369
ta có :369=(2\(\times\)18)9=29\(\times\)189
vì 184>164mà 164=(24)4=216
mà 216>29
\(\Rightarrow\)184>29
\(\Rightarrow\)184\(\times\)189>29\(\times\)189
\(\Rightarrow\)1813>369mà 369 >329
\(\Rightarrow\)1813>329
\(\Rightarrow\)(-18)13<(-32)9