Tìm các chữ số \(a,b,c\)thỏa mãn:
\(\sqrt{100a+10b+c}=\left(a+b\right)\sqrt{c}\)
Thanks nhiều
tìm các số a;b thỏa mãn P=\(\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}{a-b}=\)-4
các bạn giải hộ mình nhé mình đang cần gấp thanks các bạn nhiều
cho các số dương a,b,c,d thỏa mãn điều kiện abcd=1 Tìm max \(P=\left(\sqrt{1+a}+\sqrt{1+b}\right)\left(\sqrt{1+c}+\sqrt{1+d}\right)\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c+\(\sqrt{2abc}=2\)
CMR \(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
giúp mik vs nhé cảm ơn rất nhìu
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=3 tìm GTLN của
\(\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(a+c\right)}\)
Cô-si : \(\sqrt{\left(a+b\right)\left(b+c\right)}\le\frac{a+b+b+c}{2}=\frac{a+2b+c}{2}\)
Ta sẽ chứng minh \(VT\le6=\Sigma_{cyc}\frac{a+2b+c}{2}\) . Ta có:
\(VP-VT=\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(\sqrt{c+a}+\sqrt{b+c}\right)^2}\ge0\)
Từ đó..
Cho các số a, b, c thỏa mãn
\(a+b+c=abc\)
Tìm Max S = \(\frac{a}{\sqrt{bc.\left(1+a^2\right)}}+\frac{b}{\sqrt{ac.\left(1+b^2\right)}}+\frac{c}{\sqrt{ab.\left(1+c^2\right)}}\)
Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). Chứng minh rằng:\(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = abc. Chứng minh rằng \(\sqrt{\dfrac{a.\left(a+c\right)}{a+bc}}+\sqrt{\dfrac{b.\left(b+c\right)}{b+ac}}=\sqrt{a+b}\)
Cho a,b,c là các số thực không âm thỏa mãn a+b+c = 1011. Chứng minh rằng:
\(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) + \(\sqrt{2022b+\dfrac{\left(c-a\right)^2}{2}}\)+\(\sqrt{2022c+\dfrac{\left(a-b\right)^2}{2}}\) ≤ \(2022\sqrt{2}\)
Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\)
\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)
\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)
\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)
\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)
\(=\dfrac{2a+b+c}{\sqrt{2}}\).
Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)
\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)
ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.
cho a,b,c không âm thỏa mãn:
\(\sqrt{a}+b+\sqrt{c}=\sqrt{3}\) và\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)+\left(c+2b\right)}=3\)
Tính giá trị của biểu thức \(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
giúp mk vs thanks trước nha
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks