Cho tam giác ABC cân A . Kẻ AD vuông góc với BC . Chứng minh AD là tia phân giác góc A
Cho tam giác ABC cân A . Kẻ AD vuông góc với BC . Chứng minh AD là tia phân giác góc A
Xét tam giác ABD vuông tại D và tam giác ACD vuông tại D có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
=> Tam giác ABD = Tam giác ACD (cạnh huyền - góc nhọn)
=> BAD = CAD (2 góc tương ứng)
=> AD là tia phân giác của A
Cho tam giác ABC cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A ?
C1: Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD (chung)
\(\widehat{ADB}=\widehat{ADC}\) ( = 900)
AB = AC ( \(\Delta ABC\)cân tại A )
Do đó: \(\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông)
Cho tam giác cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A
Xét hai tam giác vuông ADB và ADC, ta có:
∠(ADB) =∠(ADC) = 90o
AB = AC (giả thiết)
AD cạnh chung
Suy ra: ΔADB= ΔADC(cạnh huyền, cạnh góc vuông)
⇒ ∠(BAD) =∠(CAD) (hai góc tương ứng)
Vậy AD là tia phân giác ∠(BAC)
Cho ABC cân tại A. kẻ AD vuông góc với BC. Chứng minh AD là tia phân giác của góc A.
xét 2 tam giác vuông BAD và CAD có :AD : cạnh chungAB = AC ( vì tam giác ABC cân tại A )=> tam giác BAD = tam giác CAD ( cạnh huyền - cạnh góc vuông)=> ^BAD = ^CAD ( 2 góc tương ứng )=> AD là tia phân giác của góc A
cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC (D thuộc BC ). a, Chứng minh tam giác ADB = tam giác ADC b, Chứng minh AD vuông góc BC c, Kẻ DM vuông góc AB ,DN vuông góc AC. Chứng minh AM = AN. d, Chứng minh MN // BC.
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Giúp mình vs
a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.