a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC
a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có
BA=BC
\(\widehat{ABD}\) chung
Do đó: ΔBAD=ΔBCE
b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có
BF chung
BE=BD
Do đó:ΔBEF=ΔBDF
Suy ra: \(\widehat{EBF}=\widehat{DBF}\)
hay BF là tia phân giác của góc ABC
Cho tam giác ABC cân tại B, góc B<90 độ.Kẻ AD vuông góc với BC,CE vuông góc với AB(D thuộc cạnh BC< E thuộc cạnh AB)
a)Chứng Minh: tam giác BAD = Tam giác BCE
b)Gọi F là giao điểm của AD và CF. Chứng minh BF là tia phân giác của góc ABC
c) Chứng minh FA>AC\2( AC phần 2)
giúp mik nhe iu mn
cho tam giác ABC cân ở B , B<90 độ kẻ AD vuông góc BC(D thuộc BC):CE vuông góc AB (E thuộc AB). gọi I lF GIAO ĐIỂM CỦA AD VÀ CE . CHỨNG MINH
a, BD=BE
b,BI phân giác GÓC ABC
c, ED song song AC
D, TỪ A KẺ ĐƯỜNG THẲNG VUÔNG GÓC VỚI AB , TỪ C KẺ ĐƯỜNG THẲNG VUÔNG GÓC VỚI BC. HAI ĐƯỜNG THẢNG NÀY CẮT NHAU TẠI K . CHỨNG MINH B,I,K THẲNG HÀNG
Cho tam giác ABC cân tại A ( ). Kẻ BD vuông góc AC, CE vuông góc AB (D thuộc cạnh AC, E thuộc cạnh AB).
a) Chứng minh ∆ABD = ∆ACE.
b) Gọi I là giao điểm của BD và CE. Chứng minh AI là tia phân giác của góc BAC.
c) Chứng minh IB > .
Bài 1
Cho tam giác ABC vuông tại A có đường cao AH. Trên cạnh BC lấy điểm D sao cho BD = BA.
a) Chứng minh góc HAD + góc BDA= góc DAC+ góc DAB. Từ đó suy ra AD là tia phân giác của góc HAC
b) Chứng minh AB+ AC< BC+ AH
Bài 2
Cho tam giác ABC có góc A = 90 độ; AC>AB. Kẻ AH vuông góc vs BC .Trên BC lấy điểm D sao cho HD=HB. Kẻ CE vuông góc vs AD kéo dài.
a) Chứng minh CD là tia phân giác của góc ACE
b) Gọi giao điểm của AH và CE là K. Chứng minh KD song song vs AB
làm giúp mk vs. thanks
Cho tam giác ABC cân tại A, kẻ BD vuông góc với ACh(D thuộc AC). Kẻ vuông góc với AB tại E,gọi I là giao điểm của BD và CE chứng minh
A, BD=CE
B, tam giác BIC cân
C, AI là tia phân giác của góc BAC
D, DE//BC
E, gọi H là trung điểm của BC. Chứng minh A,I,H thẳng hàng
F,chứng minh AI vuông góc với BC
Cho tam giác ABC (góc A bé hơn 90 độ), AB=AC. Gọi D là trung điểm của cạnh BC. Chứng minh:
a)tam giác ADB=tam giác ADC
B) AD là tia phân giác của góc A
C) kẻ BE vuông góc AC ( E thuộc AC), CF vuông góc AB ( F thuộc AB). Chứng minh: BF=EC
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
cho tam giác ABC vuông cân ở A ,kẻ BD vuông góc với AC , CE vuông góc AB ( D thuộc AC);. Gọi O là giao điểm của BD và CE
a) chứng minh : AD = AE
b) chứng minh : tam giác OBC cân
c) chứng minh : AO vuông góc với BC
Cho tam giác abc cân tại a (góc a<90 độ) vẽ BD vuông góc với AC,CE vuông góc AB(D thuộc AC,E thuộc AB) gọi I là giao điểm của BD và CE
a)Chứng minh tam giác ABD bằng tam giác ACE
b)Chứng minh tam giác IBC cân
c)chứng minh AI^2+BE^2=AD^2+BI^2