Tim x
\(\frac{2x}{3}-\frac{3}{4}>0\)
tim x
a)\(2x\left(x-\frac{1}{7}\right)=0\)
b)\(\left(x-9\right).\left(x+\frac{3}{5}\right)=0\)
c)\(\left(\frac{-4}{7}-2x\right)\left(x-\frac{5}{4}\right)=0\)
a) \(2x\left(x-\frac{1}{7}\right)=0\)
\(x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow2x-2.\frac{1}{7}=0\)
\(2x-\frac{2}{7}=0\)
=> \(2x=\frac{2}{7}\)
=> x=\(\frac{1}{7}\)
b) (x-9)(\(x+\frac{3}{5}\))=0
\(\Rightarrow\orbr{\begin{cases}x-9=0\\x+\frac{3}{5}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-3}{5}\end{cases}}\)
Vậy x=0 hoặc x=-3/5
c) \(\left(\frac{-4}{7}-2x\right)\left(x-\frac{5}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{-4}{7}-2x=0\\x-\frac{5}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{5}{4}\end{cases}}\)
Vậy x=-2/7 hoặc x=5/4
a, => x.(x-1/7) = 0:2 = 0
=> x=0 hoặc x-1/7=0
=> x=0 hoặc x=1/7
Vậy x thuộc {0;1/7}
b, => x-9=0 hoặc x+3/5=0
=> x=9 hoặc x=-3/5
Vậy x thuộc {-3/5;9}
c, => -4/7-2x=0 hoặc x-5/4=0
=> x=-2/7 hoặc x=5/4
Vậy x thuộc {-2/7;5/4}
Tk mk nha
giai bpt:
a) \(\frac{x-2}{4}+\frac{3x+4}{3}< 0\)
b) \(\frac{6x+9}{x-4}>0\)
c) \(\frac{2x-3}{2x+3}+\frac{2x+3}{2x-3}< 0\)
d) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
Tim x
\(|\left(x+\frac{1}{2}\right)|2x-\frac{3}{4}||=2x-\frac{3}{4}\)
help.. me mai mk nop r
neu de thi thu lam xem, dung m k cho
a, \(\frac{3}{4}-\frac{2}{5}.x=x\)
b,( 2x - 1 ) . ( 3x - 1/5 ) . ( 4 - 2x ) = 0
bai toan tim x
giúp mk nhé !
mai mk phải nộp òi
a) \(\frac{3}{4}-\frac{2}{5}.x=x\)
\(\Rightarrow\frac{-2}{5}.x-x=\frac{-3}{4}\)
\(x.\left(\frac{-2}{5}-1\right)=\frac{-3}{4}\)
\(x.\frac{-7}{5}=\frac{-3}{4}\)
\(x=\frac{-3}{4}:\left(\frac{-7}{5}\right)\)
\(x=\frac{15}{28}\)
b) (2x-1).(3x-1/5).(4-2x) = 0
=> 2x - 1 = 0 => 2x = 1 => x = 1/2
3x-1/5 = 0 => 3x = 1/5 => x = 1/15
4-2x = 0 => 2x = 4 => x = 2
KL: x = 1/2 hoặc x = 1/15 hoặc x = 2
Cho bieu thuc \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
a) Rut gon B
b) Tinh gia tri bt B tai x thoa man : l 2x+1 l=5
c) Tim x de B=\(\frac{-3}{5}\)
d) Tim x de B<0
a) \(B=\left[\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x-4}{x-3}-\frac{\left(x-1\right)}{x+3}\right]:\left(\frac{x+3-1}{x+3}\right)\)
ĐK: \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
\(=\left[\frac{21+x-4-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+2}{x+3}\right)\)
\(=\left[\frac{21+x-4-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\right]\times\left(\frac{x+3}{x+2}\right)\)
\(=\left(\frac{-x^2+5x+14}{x-3}\right)\left(\frac{1}{x+2}\right)\)
\(=\frac{-\left(x^2+2x-7x-14\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{-\left(x+2\right)\left(x-7\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\frac{7-x}{x-3}\)
b) \(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Mà \(x\ne-3\)
\(\Rightarrow x=2\)
Thế \(x=2\)vào B ta được:
\(B=\frac{7-2}{2-3}=-5\)
c) \(B=\frac{7-x}{x-3}=\frac{-3}{5}\)
\(\Leftrightarrow5\left(7-x\right)=-3\left(x-3\right)\)
\(\Leftrightarrow35-5x+3x-9=0\)
\(\Leftrightarrow-2x=-26\)
\(\Leftrightarrow x=13\)
Vậy để \(B=\frac{-3}{5}\)thì \(x=13\)
d) B<0\(\Rightarrow\frac{7-x}{x-3}< 0\)
TH1: \(\hept{\begin{cases}7-x< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x>3\end{cases}\Rightarrow}x>7}\)
TH2: \(\hept{\begin{cases}7-x>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x< 3\end{cases}\Rightarrow}x< 3}\)
Để B<0 thì x>7 hoặc x<3
a) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\) ĐKXĐ: x khác =-3; x khác -2
\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)
\(B=\frac{3x+6}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)
\(B=\frac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{x+2}\)
\(B=\frac{3}{x-3}\)
b) bước đầu tiên ta phải tìm x:
\(\left|2x+1\right|=5\)
TH1: 2x+1=5 TH2: 2x+1=-5
2x=4 2x=-6
x=2 (nhận) x=-3 (loại)
thay x=2 vào biểu thức B, ta được:
\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)
vậy B=-3 tại x=2
c) Để \(B=-\frac{3}{5}\)thì \(\frac{3}{x-3}=-\frac{3}{5}\)
\(\Leftrightarrow-3\left(x-3\right)=15\)
\(\Leftrightarrow x-3=-5\)
\(\Leftrightarrow x=-2\)
vậy \(x=-2\)thì \(B=-\frac{3}{5}\)
d) để B<0 thì \(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
vậy để B<0 thì x phải < 3 và x khác -3
Tim x,y,z :
a) x=y:2,\(\frac{y}{4}=\frac{z}{5}\)va 2x+2y-z-7=0
b)\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)va x-y=15
c)\(\frac{x}{y}=\frac{2}{3}\), \(\frac{x}{z}=\frac{1}{2}\)va \(x^3\)- xyz=-16
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
b) Ta có: \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\) <=> \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> \(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}}\) => \(\hept{\begin{cases}x=30.2=60\\y=30.\frac{3}{2}=45\\z=30.\frac{4}{3}=40\end{cases}}\)
Vậy ...
giúp mik vs mai mik kiểm tra rùi
a) $\frac{x-1}{x}$ - $\frac{1}{x+1}$ = $\frac{2x-1}{x2+x}$
b) (x+2).(5-3x)=0
c)$\frac{5(1-2x)}{3}$ + $\frac{x}{2}$ = $\frac{3(x-5)}{4}$ - 2
d)$(x+2)^{2}$ - (x-1).(x+3) = (2x-4).(x+4)-3
e)$(2x-3)^{2}$ = (2x-3).(x+1)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
giải ác phương trình sau:
1)\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\)
2)\(\frac{x}{x-1}-\frac{5x-3}{x^2-1}=0\)
3)\(\frac{1}{x-3}-\frac{4}{x+3}=\frac{3x}{9-x^2}\)
4)\(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
5)\(\frac{-3}{2x}-\frac{x+1}{x+2}=\frac{-3}{x\left(x+2\right)}\)
6)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
1, Đk x≠2;-2
\(\frac{x+2}{2x-4}-\frac{4x}{x^2-4}=0\\ =>\frac{x+2}{2\left(x-2\right)}-\frac{4x}{\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{\left(x+2\right)^2}{2\left(x^2-4\right)}-\frac{8x}{2\left(x-2\right).\left(x+2\right)}=0\\ =>\frac{x^2+4x+4-8x}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x^2-4x+4}{2\left(x-2\right)\left(x+2\right)}=0\\ =>\frac{x-2}{2\left(x+2\right)}=0\\ =>x-2=0\\ =>x=2\left(loại\right)\)
$\text{f(x)=2x+\frac{3}{2x-4}-(3+\frac{3}{2x-4})=0}$