tìm m để đồ thị hàm số \(y=mx^4-4x^2+1\) có 3 điểm cực trị là đỉnh của một tam giác vuông cân
Tìm các giá trị của tham số m để đồ thị hàm số: y = x 4 - 2 ( m + 1 ) x 2 + m 2 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
A. Không tồn tại m
B. m = 0.
D. m = -1.
Tìm các giá trị của tham số m để đồ thị hàm số: y = x 4 - 2 m 2 x 2 + 1 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
A. m = -1.
B. m ≠ 0.
C. m = 1.
D. m = ± 1 .
Chọn D
Hàm số có 3 điểm cực trị ⇔ m ≠ 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C chỉ có thể vuông cân tại đỉnh A
Kết hợp điều kiện ta có: m = ± 1 ( thỏa mãn).
Lưu ý: có thể sử dụng công thức b 3 8 a + 1 = 0 .
Tìm tất cả các giá trị của m để đồ thị hàm số y = x 4 - 2 m 2 x 2 + 1 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
A. m=1
B. m ∈ - 1 ; 1
C. m ∈ - 1 ; 0 ; 1
D. m ∈ 0 ; 1
Đáp án là B
Cách 1. Sử dụng công thức tính nhanh ta có
Cách 2. Nhận xét m thỏa mãn thì –m cũng thỏa mãn và hàm số có 3 điểm cực trị khi và chỉ khi m≠ 0 suy ra chọn B
Tìm tất cả các giá trị của tham số m để đồ thị hàm số: y = x 4 - 2 m 2 x 2 + 1 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.
A. .
B. .
C. .
D. .
Tìm tất cả các giá trị của tham số m để đồ thị hàm số: y = x 4 - 2 m 2 x 2 + 1 có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.
A. m =1
B. m= ±1
C. m= -1
D. m≠0
Tìm m để đồ thị hàm số y = x 4 - 2 ( m + 1 ) x 2 + m 2 có 3 điểm cực trị là đỉnh của một tam giác vuông
Cho hàm số y = x 4 - 2 m x 2 + m 2 - 2 . Tìm m để hàm số có 3 điểm cực trị và các điểm cực trị của đồ thị hàm số là ba đỉnh của một tam giác vuông?
A. m = 1
B. m = - 1
C. m = 2
D. m = - 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = x 4 - 2 m 2 x 2 + 1 ( C ) có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
A. m = ± 1
B. m = 1 hoặc m = 0
C. m = -1 hoặc m = 0
D. m = -1
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Có bao nhiêu giá trị của tham số m để đồ thị hàm số y = x 4 - 2 m x 2 + 2 m 2 - m có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
A. Vô số.
B. Không có.
C. 1.
D. 4.
Chọn C.
Cách 1: TXĐ: D = ℝ
Hàm số đã cho có ba điểm cực trị khi và chỉ khi m > 0 (*)
Với điều kiện (*) đồ thị hàm số có ba điểm cực trị là:
Ta có:
Suy ra tam giác ABC cân tại A. Do đó tam giác ABC vuông cân tại A
Kết hợp (*) suy ra m = 1.
Cách 2: Áp dụng công thức tính nhanh: Đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân khi và chỉ khi
Ta có: ycbt ⇔ ( - 2 m ) 3 + 8 = 0