cho hình chữ nhật ABCD trên đường chéo BD lấy E. Kéo dài CE 1 đoạn EF = EC. Kẻ FN vuông góc AB, FM vuông góc AD. a, CM MN //AC
b) 3 điểm M,N,E thẳng hàng
Cho hình chữ nhật ABCD. Trên đường chéo BD lấy 1 điểm E tuỳ ý. Kéo dài CE 1 đoạn EF=EC. Vẽ FG vuông góc AB tại G và vẽ FH vuông góc AD tại H. Chứng minh 3 điểm E, G, H thẳng hàng
Cho hình chữ nhật ABCD. Lấy điểm E thuộc đường chéo BD. Trên tia CE lấy điểm F sao cho EF = EC, kẻ FG vuông góc AB và FH vuông góc AD. Đường thẳng FG cắt BD ở K.
a) C/m: Tứ giác AGFH là hình chữ nhật.
b) C/m: FB = CK.
c) C/m: AF//BD.
d) C/m: 3 điểm H, G, E thẳng hàng.
GIÚP MK GIẢI NHA M.N!!! THANKS!
Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O,B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC (M∈BC), kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).
a)Tứ giác CMFN là hình gì, vì sao?
b)Chứng minh CF // BD
c)Chứng minh ba điểm E,M,N thẳng hàng
a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)
\(\Leftrightarrow\widehat{BCN}=90^0\)
hay \(\widehat{MCN}=90^0\)
Xét tứ giác MCNF có
\(\widehat{MCN}=90^0\)(cmt)
\(\widehat{FMC}=90^0\)(FM⊥BC)
\(\widehat{FNC}=90^0\)(FN⊥DC)
Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ABCD là hình chữ nhật(gt)
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)
mà AC cắt BD tại O(gt)
nên O là trung điểm chung của AC và BD; AC=BD
Xét ΔACF có
O là trung điểm của AC(cmt)
E là trung điểm của AF(gt)
Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)
⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay CF//BD(đpcm)
1. Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O, B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC , kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).
a)Tứ giác CMFN là hình gì, vì sao?
b)Chứng minh CF // BD.
c)Chứng minh ba điểm E, M, N thẳng hàng.
a)Tứ giác CMFN là hình chữ nhật vì có 3 góc vuông
Cho hình chũ nhật ABCD, E thuộc đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho CE = EF. Vẽ FG vuông góc AB tại G, FH vuông góc AD tại H
a) Chứng minh rằng tứ giác AHFG là hình chũ nhật
b) AF // BD
c) E, G, H thẳng hàng
Cho hình chữ nhật ABCD. Nối C với một điểm E bất kỳ trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với đường thẳng AB và AD tại h và K. Chứng minh rằng:
a) Tứ giác AHFK là hình chữ nhật;
b) AF song song với BD;
c) Ba điểm E, H, K thẳng hàng
a) F H A ^ = H A K ^ = A K F ^ = 90 0
Þ AHFK là hình chữ nhật.
b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF
Þ AF//OE
Þ AF/BD
c) Gọi I là giao điểm của AF và HK.
Chứng minh
H 1 ^ = A ^ 1 ( H 1 ^ = A 2 ^ = B 1 ^ = A 1 ^ ) ⇒ K H / / A C mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.
Mà E là trung điểm của FC Þ K, H, E thẳng hàng
Cho hình chữ nhật ABCD lấy điểm E trên đường chéo BD. Trên tia CE lấy điểm F sao cho E là trung điểm của CF. Từ F kẻ FG vuông góc với AB tại G, FH vuông góc với AD tại H.
a.C/m AGFH là hcn
b.C/m BD//AF
c.C/m HG//AC
d.C/m H,G,E thẳng hàng
Cho hình chữ nhật ABCD. Kẻ CE⊥BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Kẻ FN⊥AB, FM⊥AD
a) Chứng minh AF = MN
b) Chứng minh 3 điểm M,N,E thẳng hàng.
~~ Giúp mk với !!!! Mk gấp lắm!!
Cho hình chữ nhật ABCD,nối c với 1 điểm e bất kì thuộc đường chéo BD.Trên tia đối của tia EC lấy điểm F sao cho EF=EC.Vẽ FH vuông góc với AB;FK vuông góc với AD
a) CMR Tứ giác AHFK là hình chữ nhật
b) CM AF//BD và HK//AC
c) CM 3 điểm E,H,K thẳng hàng