Ôn tập chương I : Tứ giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aocuoi Huongngoc Lan

Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O,B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC (M∈BC), kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).

a)Tứ giác CMFN là hình gì, vì sao?

b)Chứng minh CF // BD

c)Chứng minh ba điểm E,M,N thẳng hàng

Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 13:23

a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)

\(\Leftrightarrow\widehat{BCN}=90^0\)

hay \(\widehat{MCN}=90^0\)

Xét tứ giác MCNF có 

\(\widehat{MCN}=90^0\)(cmt)

\(\widehat{FMC}=90^0\)(FM⊥BC)

\(\widehat{FNC}=90^0\)(FN⊥DC)

Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ABCD là hình chữ nhật(gt)

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AC cắt BD tại O(gt)

nên O là trung điểm chung của AC và BD; AC=BD

Xét ΔACF có 

O là trung điểm của AC(cmt)

E là trung điểm của AF(gt)

Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)

⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay CF//BD(đpcm)


Các câu hỏi tương tự
Đỗ Thị Khánh Vui
Xem chi tiết
Ngô Quốc An
Xem chi tiết
Nguyễn Hải
Xem chi tiết
yiuytr68fyig
Xem chi tiết
Na Trầm Cảm
Xem chi tiết
Nguyễn mai hoa
Xem chi tiết
Raterano
Xem chi tiết
Lê Lý
Xem chi tiết
Nguyễn Thuỷ Tiên
Xem chi tiết