Tìm Min của:
\(\frac{x-1}{2}+\frac{2}{x-1}\)
Các bạn giúp mk với!
Các bn giúp mk bài này nhanh nhé! Mk đag cần gấp:
a,Tìm min của P= \(x^4-8x^3+28x^2-48x+35\)
b, Cho x,y>0 và x+y=6. Tìm min của Q= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{100}{xy}+xy\)
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
Tìm min của P=\(\frac{x^2}{\left(y+z\right)^2}+\frac{y^2}{\left(x+z\right)^2}+\frac{z^2}{\left(x+y\right)^2}\)
Các bạn giải giúp mk nha!!! MK cảm ơn trước =))
x, y, z thuộc R nên đâu có những thứ này
\(\sqrt{\frac{x^2}{\left(y+z\right)^2}}=\frac{x}{y+z}\)
và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{3}{2}\)
Mk cx biết vậy nhưng mk ko biết cách giải thôi !!! Bạn giải giúp mk nha =))
tìm min:
A=\(\frac{X^2+X+1}{\left(X-1\right)^2}\)
GIÚP MK VỚI!MK CẦN RẤT GẤP
Đặt \(y=x-1\Rightarrow x=y+1\)
Ta có \(A=\frac{\left(y+1\right)^2+\left(y+1\right)+1}{y^2}=\frac{y^2+3y+3}{y^2}=\frac{3}{y^2}+\frac{3}{y}+1\)
Lại đặt \(t=\frac{1}{y}\) , \(A=3t^2+3t+1=3\left(t+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy A đạt giá trị nhỏ nhất bằng 1/4 khi t=-1/2 <=> y = -2 <=> x = -1
Các bạn giỏi toán hộ mk bài này cái :
Cho x , y > 0 ; thỏa mãn x + y = 1 .
\(\text{Tìm Min(A) }=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)
\(=\frac{6}{\left(x+y\right)^2}=6\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Bài làm:
Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)
\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{1^2}+2=6\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Theo bđt Svacxo thì :
\(A=\frac{1}{x^2+y^2}+\frac{2}{2xy}\ge\frac{\left(1+\sqrt{2}\right)^2}{1}=1+2\sqrt{2}+2\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=0,5\)
Vậy \(A_{min}=1+2\sqrt{2}+2\)khi \(x=y=0,5\)
dấu = mình chọn bừa nha
Tìm x:
\(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
Giúp mk với nhé các bạn! Tks trc!
Ta có:\(\frac{x-1}{2013}+\frac{x-2}{2012}=\frac{x-3}{2011}+\frac{x-4}{2010}\)
\(\Rightarrow\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-4}{2010}-1\right)\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}=\frac{x-2014}{2011}+\frac{x-2014}{2010}\)
\(\Rightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)
\(\Rightarrow\left(x-2014\right).\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)nên để biểu thức =0
\(\Leftrightarrow x-2014=0\Rightarrow x=2014\)
Ta cTa có: 2013 x − 1 + 2012 x − 2 = 2011 x − 3 + 2010 x − 4 ⇒ 2013 x − 1 − 1 + 2012 x − 2 − 1 = 2011 x − 3 − 1 + 2010 x − 4 − 1 ⇒ 2013 x − 2014 + 2012 x − 2014 = 2011 x − 2014 + 2010 x − 2014 ⇒ 2013 x − 2014 + 2012 x − 2014 − 2011 x − 2014 − 2010 x − 2014 = 0 ⇒ x − 2014 . 2013 1 + 2012 1 − 2011 1 − 2010 1 = 0
1 = 0
chúc bn hok tốt @_@
các bạn giúp mk câu này với :
Tìm x,y,z biết :
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Tìm x biết
\(\frac{-5}{6}+\frac{8}{3}+\frac{-29}{6}\le X\le-\frac{1}{2}+2+\frac{5}{2}\)
Các bạn cố gắng giúp mk vs nha
Tìm \(x\in N:\)
\(-4\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{-2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Các bn ơi giúp mk với mk cần gấp!!!!!!!!