Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khiết Hảo
Xem chi tiết
Vĩnh Thụy
Xem chi tiết
Thảo
1 tháng 9 2016 lúc 8:50

bạn bấm mấy tính là đc chứ j

**** nha bn

**** nha

Giang Hồ Đại Ca
1 tháng 9 2016 lúc 8:57

A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1 

Tức là : 

\(\sqrt{244}\)và \(\sqrt{4}\)

tất nhiên ........

B = căn bậc hai của 196 - 1/căn bậc hai của 6 

Tất nhiên ......

2) Tìm GTNN của A = 2 + căn bậc hai của x 

\(A=2+\sqrt{x}\)

\(\sqrt{x+2}\)

3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1 

\(B=5-2.\sqrt{x-1}\)

\(4-2\sqrt{x}\)

Lê Trúc Anh
Xem chi tiết
Akai Haruma
23 tháng 7 2021 lúc 18:28

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.

Nguyễn Minh Khang
Xem chi tiết
Ngô Lan Chi
Xem chi tiết
Kim Kai
Xem chi tiết
Nguyễn Thảo Nhi
Xem chi tiết
marie
Xem chi tiết
Lê Quỳnh Thanh Ngân
17 tháng 10 2018 lúc 21:13

cmr là cái j

Nguyễn Thị Xuân
4 tháng 4 2021 lúc 9:59

Lê Thanh Thùy Ngân 

cmr là chứng minh rằng bạn nhé 

Khách vãng lai đã xóa
Hải Vân
Xem chi tiết