Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vân Huyền
Xem chi tiết
Đỗ Đào Vũ Long
Xem chi tiết
nguyễn văn sáng
Xem chi tiết
nguyễn hữu vượng
Xem chi tiết
Nguyễn Thị Mỹ Hạnh
Xem chi tiết
ha vu lam
6 tháng 4 2015 lúc 22:27

2xyz=x+y+z+9

=>2=1/yz+1/xz+1/xy+9/xyz

 nếu x>=y>=z>=1

=>2=< (1/z^2)+(1/z^2)+(1/z^2)+(1/z^2)=(1/z^2)4

=>z^2=<24

=>z=1 ;2 ;3 ;4

rồi thay vào tìm tiếp x ;y

Dương Minh Đức
15 tháng 1 2018 lúc 19:29

 xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 18:40

Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)

Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)

Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)

Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)

\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)

\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)

Keo Bong
Xem chi tiết
An Nguyễn Đức
25 tháng 2 2017 lúc 11:56

Câu a thôi nhá

a) +) Xét 1 trong 3 số x,y,z bằng 0 => xyz=0

                                                   => x+y+z=0. Mà một trong 3 số bằng 0

                                                   => x+y=0 hoặc y+z=0 hoặc x+z=0

                                                   => x=-y hoặc y=-z hoặc z=-x.

    +) Xét x,y,x khác 0.

Vì vai trò của x,y,x là bình đẳng nên ta giả sử x<=y<=z.

=> x+y+z=xyz<= 3z

=> x+y<=3

Tự làm tiếp nhá

nguyễn minh quý
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 9:18

Ta có: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow a^5+b^5+2abc\ge a^2b^2\left(a+b\right)+2abc\)

\(\ge ab\left[ab\left(a+b\right)+2c\right]\ge ab\left[2\left(a+b\right)+2c\right]=2ab\left(a+b+c\right)\) (áp dụng với \(a,b,c\ge\sqrt{2}\))

\(\Rightarrow\frac{1}{a^5+b^5+2abc}\le\frac{1}{2ab\left(a+b+c\right)}\)

Áp dụng vào bài toán ta được

\(P\le\frac{1}{2xy\left(x+y+z\right)}+\frac{1}{2yz\left(x+y+z\right)}+\frac{1}{2zx\left(x+y+z\right)}\)

\(=\frac{x+y+z}{2xyz\left(x+y+z\right)}=\frac{1}{2xyz}\)

Phó Thị Minh Ánh
Xem chi tiết
Trịnh Xuân Diện
22 tháng 10 2015 lúc 11:45

1)

Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)

x+16=y =>x-y=-16

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)

=>\(\frac{x}{7}=-4=>x=-28\)

=>\(\frac{y}{3}=-4=>y=-12\)

Vậy x=-28 ;y=-12

2)

=>x2-3x+5 chia hết cho x-3

mà (x-3)2 chia hết cho x-3

=>x2-3x+5 -(x-3)2 chia hết cho x-3

=> x2-3x+5 -x2-9 chia hết cho x-3

=>-3x+(-4) chia hết cho x-3

lại có : 3.(x-3) chia hết cho x-3

=>-3x-(-4)+3.(x-3) chia hết cho x-3

=>-3x+(-4)+3x-9 chia hết cho x-3 

=>-13 chia hết cho x-3

=>x-3 \(\in\)Ư(13)={-1;1;-13;13}

=>x\(\in\){2;4;-9;16}