CMR:
\(\sqrt{1^{3+}2^3}\) = 1+2
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 1: CMR
Bài 2: CMR
CMR: \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}=\sqrt{2}\)
\(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}=\frac{\sqrt{\frac{3+2\sqrt{2}}{3}}+\sqrt{\frac{3-2\sqrt{2}}{3}}}{\sqrt{\frac{3+2\sqrt{2}}{3}}-\sqrt{\frac{3-2\sqrt{2}}{3}}}=\frac{\frac{\sqrt{\left(1+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}{\frac{\sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}\)\(=\frac{1+\sqrt{2}+\sqrt{2}-1}{1+\sqrt{2}-\sqrt{2}+1}=\frac{2\sqrt{2}}{2}=\sqrt{2}\left(đpcm\right)\)
\(VT=\frac{\left(\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}\right)^2}{\left(\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}\right)\left(\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}\right)}\)
\(=\frac{1+\frac{2\sqrt{2}}{3}+1-\frac{2\sqrt{2}}{3}+2\sqrt{\left(1+\frac{2\sqrt{2}}{3}\right)\left(1-\frac{2\sqrt{2}}{3}\right)}}{1+\frac{2\sqrt{2}}{3}-\left(1-\frac{2\sqrt{2}}{3}\right)}\)
= \(=\frac{2+2\sqrt{1-\frac{8}{9}}}{1+\frac{2\sqrt{2}}{3}-1+\frac{2\sqrt{2}}{3}}\)
\(=\frac{2+2\cdot\frac{1}{3}}{\frac{4\sqrt{2}}{3}}=\frac{\frac{8}{3}}{\frac{4\sqrt{2}}{3}}=\frac{8}{3}\cdot\frac{3}{4\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}=vp\)
=> ĐPCM
CMR:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{3}}+....+\dfrac{1}{\left(n+1\right)\left(\sqrt{n}+n\sqrt{n+1}\right)}< 1\)
CMR: \(\dfrac{1}{1\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+\dfrac{1}{3\sqrt{4}}+...+\dfrac{1}{n\sqrt{n+1}}>2\) với n ϵ N*
Bài 1: CMR
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+........+\frac{1}{\left(n+1\right)\sqrt{n}}>2,n\varepsilonℕ^∗\)
Bài 2: Cho S= \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{3\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
CMR S<\(\frac{1}{2}\)
\(CMR:\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}>3\)
Ta có \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}=\frac{1-\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+\frac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}-\sqrt{4}\right)\left(\sqrt{3}+\sqrt{4}\right)}\)
Ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{47}-\sqrt{48}}{-1}\)
\(=\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{47}-\sqrt{48}}{-1}\)
\(=\frac{\sqrt{1}-\sqrt{48}}{-1}\)
\(=4\sqrt{3}-1\approx5,9>3\left(đpcm\right)\)
+ \(\frac{\sqrt{47}-\sqrt{48}}{\left(\sqrt{47}-\sqrt{48}\right)\left(\sqrt{47}+\sqrt{48}\right)}\)
= \(\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{47}-\sqrt{48}}{-1}\)
= \(\sqrt{48}-1\left(1\right)\)
Lại có: \(3=4-1=\sqrt{16}-1\left(2\right)\)
Từ (1) và (2)
=> \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{47}+\sqrt{48}}>3\)
CMR:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}< 1\)
\(U\left(n\right)=\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}\)
\(U\left(n\right)=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n.\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(U\left(n\right)=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n}\sqrt{n+1}\right)^2}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(S_{u\left(n\right)}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=1-\frac{1}{5}< 1\)
CMR:
\(\sqrt{1+\dfrac{1}{2}\sqrt{3}}-\sqrt{1-\dfrac{1}{2}\sqrt{3}}=1\)
\(\sqrt{1+\dfrac{1}{2}\sqrt{3}}-\sqrt{1-\dfrac{1}{2}\sqrt{3}}\)
\(=\sqrt{\dfrac{4+2\sqrt{3}}{4}}-\sqrt{\dfrac{4-2\sqrt{3}}{4}}\)
\(=\dfrac{1}{2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}\right)-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\dfrac{1}{2}\left(\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\right)\)
\(=\dfrac{1}{2}\left(\sqrt{3}+1-\sqrt{3}+1\right)=1\left(\text{đ}pcm\right)\)