d ) \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
Giải phương trình:
a,\(\sqrt{2}.x-\sqrt{50}=0\)
c, \(\sqrt{3}.x^2-\sqrt{12}=0\)
d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
Trần Hữu Ngọc Minh xem tôi làm có đúng ko?
Giải:
a, \(\sqrt{2}.x-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{50}\Leftrightarrow\sqrt{2}.x=\sqrt{25.2}\)
\(\Leftrightarrow\sqrt{2}.x=\sqrt{25}.\sqrt{2}\Leftrightarrow\sqrt{2}.x=5\sqrt{2}\)
\(\Leftrightarrow x=5\)
c, \(\sqrt{3}.x^2-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{12}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4.3}\)
\(\Leftrightarrow\sqrt{3}.x^2=\sqrt{4}.\sqrt{3}\)
\(\Leftrightarrow\sqrt{3}.x^2=2\sqrt{3}\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\frac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{5}}=\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{5}.\sqrt{20}\)
\(\Leftrightarrow x^2=\sqrt{100}\)
\(\Leftrightarrow x=\pm10\)
a)\(\sqrt{2}x=\sqrt{50}\Leftrightarrow x=\frac{\sqrt{50}}{\sqrt{2}}=\frac{\sqrt{100}}{2}\)
D= \(\frac{x^2-2x+2000}{x^2}\)= 1-\(\frac{2x}{x^2}\)+\(\frac{2000}{x^2}\)
Đặt t= \(\frac{1}{2}\)=> D= 2000t2-2t+1 = (\(20\sqrt{5}t\))2-2.\(20\sqrt{5}t\).\(\frac{1}{20\sqrt{5}}\)+\(\left(\frac{1}{20\sqrt{5}}\right)^2\)\(-\left(\frac{1}{20\sqrt{5}}\right)^2\)+1
D= (\(20\sqrt{5}t\)-\(\frac{1}{20\sqrt{5}}\)) 2+\(\frac{1999}{2000}\)\(\ge\)\(\frac{1999}{2000}\)
Min D= \(\frac{1999}{2000}\)khi \(20\sqrt{5}t\)\(-\frac{1}{20\sqrt{5}}\)= 0 => t = \(\frac{1}{2000}\)=> \(\frac{1}{x}\)= \(\frac{1}{2000}\)=> x= 2000
cái này mà là toán lớp 1 á chịu thua ko giải được
tôi ko hiẻu bạn đang nói cái méo gì
mà tôi nhắn cái gì ý nhỉ do sỉn nên nhắn linh tinh đấy :))
\(xét^{ }x^2=mx+5
=>x^2-mx-5=0\)
đen ta >0
<=> \(m^2.\left(-4\right).\left(-5\right)=m^2+20>0\)
vì x1<x2
=> x2= \(\frac{m+\sqrt{m^2+20}}{2}\)
=> I x2I = \(\orbr{\orbr{\begin{cases}x=\frac{m+\sqrt{m^2+20}}{2}\\x=\frac{-m-\sqrt{m^2+20}}{2}\end{cases}}}\)( với m< \(\sqrt{m^2+20}\))và (m >\(\sqrt{m^2+20}\)
=> x1=\(\frac{m-\sqrt{m^2+20}}{2}\)
=> Ix1I =\(\orbr{\begin{cases}\frac{m-\sqrt{m^2+20}}{2}\\\frac{-m+\sqrt{m^2+20}}{2}\end{cases}}\)
vì Ix1I >Ix2I <=> Ix1I -Ix2I >0
trường hợp 1:
x1-x2= \(\frac{m-\sqrt{m^2+20}}{2}\)-\(\frac{m+\sqrt{m^2+20}}{2}\)= \(\frac{m-\sqrt{m^2+20}}{2}\frac{-m-\sqrt{m^2+20}}{2}=\frac{-2\sqrt{m+20}}{2}=-\sqrt{m^2+20}>0\)(vô lí)
trường hợp 2
x1-x2= \(\frac{m-\sqrt{m^2+20}}{2}\)- \(\frac{-m-\sqrt{m^2+20}}{2}\)= \(\frac{m-\sqrt{m^2+20}}{2}\frac{+m+\sqrt{m^2+20}}{2}=\frac{2m}{2}>0\)=> m>0
Tìm x :
a, \(\sqrt{x^2-2x}=\sqrt{2-3x}\)
b, \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
c, \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
d, \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)
e, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
f, \(\sqrt{x^2-4}-x+2=0\)
a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right)
\)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy x=3
BÀI 1: RÚT GỌN
1)\(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}\)
2)\(\sqrt{7+2\sqrt{10}}+2\sqrt{\frac{1}{5}}-\frac{1}{\sqrt{5}-2}\)
3)\(\frac{3}{\sqrt{3}-1}+\sqrt{\frac{4}{3}}-\sqrt{8+2\sqrt{5}}\)
4)\(3\sqrt{\frac{16x}{81}}+\frac{5}{4}\sqrt{\frac{4x}{25}}-\frac{2}{x}\sqrt{\frac{9a^3}{4}}\)
5)\(\frac{1}{3}\sqrt{3a}-\frac{2}{3}\sqrt{\frac{27a}{4}}+\frac{5}{a}\sqrt{\frac{12a^3}{5}}\)
BÀI 2: GIẢI PHƯƠNG TRÌNH
\(1)\sqrt{5x-1}=\sqrt{2}-1\\ 2)\sqrt{1-2x}=\sqrt{3}-1\\ 3)4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=20\\ 4)\frac{3}{5}\sqrt{\frac{25x-75}{16}}-\frac{1}{14}\sqrt{49x-147}=20\\ 5)\frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
BÀI 3: CHO BIỂU THỨC
Q=\(\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{2\sqrt{x}}{x-4}\) ĐKXĐ x ≥ 0, x ≠ 4
a) Rút gọn biểu thức Q
b) Tính Q thì x = 81
c) Tìm x để Q = \(\frac{6}{5}\)
d) Tìm x để nguyên đó Q nguyên
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Giải phương trình :
a, \(\sqrt{x+2\sqrt{x-1}}=2\)
b, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
c, \(\sqrt{4x+20}-3\sqrt{x+5}+\frac{4}{3}\sqrt{9x+45}=6\)
d, \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
2. Giải PT:
a) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow9x-7x=5+7\)
\(\Leftrightarrow2x=12\)
\(\Leftrightarrow x=6\)
\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\)
A= \(\frac{\sqrt{15}-\sqrt{20}}{\sqrt{3}-2}\)-\(\sqrt{\left(1-\sqrt{5}\right)^2}\)+\(\frac{2}{1-\sqrt{5}}\)+\(\sqrt{\frac{1}{5}}\)
P= \(\frac{\sqrt{x}+1}{\sqrt{x}-2}\)+\(\frac{2\sqrt{x}}{\sqrt{x}+2}\)+\(\frac{2+5\sqrt{x}}{4-x}\) với x ≥ 0 , x ≠4