Biết a, b là các số tự nhiên khác 0 sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\) có giá trị là số tự nhiên. Gọi d là ƯCLN a và b. Chứng minh rằng: a+b \(\ge\) d2.
Biết a, b là các số tự nhiên khác 0 sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\) có giá trị là số tự nhiên. Gọi d là ƯCLN a và b. Chứng minh rằng: a+b \(\ge\) d2.
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Cho a,b là số tự nhiên sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\) là số tự nhiên. Gọi d là ƯCLN(a,b). Chứng minh rằng a+b\(\ge\) d2
Ta có:\(\frac{a+1}{b}+\frac{b+1}{a}=\frac{a\left(a+1\right)}{ab}+\frac{b\left(b+1\right)}{ab}\)
\(=\frac{a\left(a+1\right)+b\left(b+1\right)}{ab}=\frac{a^2+b^2+a+b}{ab}\) là số tự nhiên nên \(\left(a^2+b^2+a+b\right)\) chia hết cho \(ab\)
Vì \(UCLN\left(a,b\right)=d\Rightarrow\)\(a\) chia hết cho \(d\) ; \(b\) chia hết cho \(d\)
\(\Rightarrow ab\) chia hết cho \(d^2\) và \(a^2\) chia hết cho \(d^2\) ; \(b^2\) chia hết cho \(d^2\)
\(\Rightarrow\left(a^2+b^2\right)\) chia hết cho \(d^2\)
Do đó:\(a^2+b^2+a+b\) chia hết cho \(d^2\)
\(a^2+b^2\) chia hết cho \(d^2\)
\(\Rightarrow a+b\) chia hết cho \(d^2\)
\(\Rightarrow a+b\ge d^2\left(đpcm\right)\)
Bài này có bạn hỏi rồi. Em vào câu hỏi tương tự !
Lời giải bài này chính sắc là của @ALI
Tuy nhiên lời giải này chưa thực sự hoàn hảo. trải qua đến f(n!) rồi vẫn thấy thế
Cho a và b là 2 số tự nhiên khác 0 sao cho a+1/b + b+1/a co giá trị là số tự nhiên. Gọi d là ƯCLN của a và b. Chứng minh a+b>d^2
Giúp mình với!
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Cho a,b là các số tự nhiên khác 0 sao cho (a+1)/b+(b+1)/a là số tự nhiên. Gọi d= ƯCLN(a,b). chứng minh rằng a+b>=d^2
Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)
Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)
Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)
=> \(a^2+b^2+a+b⋮d^2\)
Lại vì \(a⋮d\) và \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)
=> \(a+b⋮d^2\)
=> \(a+b\ge d^2\) (đpcm)
Cho các số tự nhiên a,b sao cho a+1/b + b+1/a có giá trị là số tự nhiên. Gọi d là ƯCLN(a,b) . Chứng minh rằng a+b lớn hơn hoặc bằng d2
Cho các số tự nhiên a, b sao cho a+1/b + b+1/a có giá trị là số tự nhiên. Gọi d là ƯCLN của a và b. CMR a+b >= d^2
Cho a , b , c là 3 số tự nhiên khác 0 . Chứng minh rằng : Giá trị của biểu thức A = \(\frac{a}{b+a}+\frac{b}{c+b}+\frac{c}{a+c}\)không là 1 số tự nhiên .
Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
- - - - -
với các số a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
Tóm lại ta có: 1 < A < 2 => A không là số tự nhiên
Cho các số tự nhiên a,b(a,b khác 0) sao cho a+1/b+b+1/a có giá trị là số tự nhiên.Gọi d là ước chung lớn nhất của a và b . Chứng minh rằng a+bl lớn hơn hoặc bằng d mũ 2
trọn hết giây cuối cùng, hưởng thụ trước khi chết
mik sẽ vặn ngược kim đồng hồ trở lại trc công nguyên
Cho các số tự nhiên a,b sao cho (a+1/b )+(b+1/a) có giá trị là số tự nhiên.Gọi d là ƯCLN(a;b) .Chứng tỏ rằng a+b > hoăc= d^2