Chứng minh nếu (a + b + c + d)(a - b - c + d) = (a - b + c - d)(a + b - c - d) thì ad = bc
B1.Cho hai số hữu tỉ a/b và c/d (b>0;d>0) chứng tỏ rằng:
Nếu a/b > c/d thì ad < bc
Nếu ad < bc thì a/b < c/d
B2.
a) chứng tỏ rằng nếu a/b < c/d (b>0;d>0) thì a/b < a+c/b+d < c/d
b) hãy viết bốn số hữu tỉ xen giữa -1/2 và -1/3
Chứng minh rằng nếu a/b<c/d(b, d>0) thì: a/b<a+c/b+d<c/d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
\(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Chứng minh rằng nếu có
(a + b + c + d)(a - b - c + d) = (a - b + c - d)(a + b - c -d) thì bốn số a, b, c, d lập thành 1 tỉ lệ thức.
Chứng minh:
Nếu a/b<c/d thì a/b < m*n+n*c/m*b+n*d<c/d
Chứng minh rằng:
a) \(\left(a^2-b^2\right)\left(c^2-d^2\right)=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b) Nếu \(x^2+y^2+z^2=xy+xz+yz\) thì x=y=z
a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)=a^2c^2-a^2d^2-b^2c^2+b^2d^2\)
\(=\left(a^2c^2+2abcd+b^2d^2\right)-\left(a^2d^2+2abcd+b^2c^2\right)\)
\(=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)
b/ \(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=z\)
Chứng minh rằng nếu \(a^4+b^4+c^4+d^4=4abcd\)và a,b,c,d là các số dương thì \(a=b=c=d\)
help me
#)Giải :
Ta có : \(a^4+b^4+c^4+d^4=4abcd\)
\(\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2c^2d^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)+2\left(ab-cd\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\c^2=d^2\\ab=cd\end{cases}}\)
Do a, b, c, d > 0
\(\Leftrightarrow a=b=c=d\left(đpcm\right)\)
Chứng minh rằng nếu \(a^3+b^3+c^3=3abc\)và a,b,c,d là các số dương thì a=b=c
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3+3abc=0\)
\(\Rightarrow[\left(a+b\right)^3+c^3]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)[\left(a+b\right)^2-\left(a+b\right)c+c^2]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ac=0\left(2\right)\end{cases}}\)
Từ (1) => a = b = c (vì a ; b ; c là các số dương)
Giải (2) ta có:
\(2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge\forall a,b\)
\(\left(a-c\right)^2\ge\forall a,c\)
\(\left(b-c\right)^2\ge\forall b,c\)
\(\Rightarrow\)Ta có: \(a-b=a-c=b-c\Rightarrow a=b=c\)
Cho các số hữu tỉ : \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{a+c}{b+d}\)(a,b,c,d thuộc Z ;b>0 ;d>0 ). Chứng minh rằng;nếu x<y thì x<z<y
Bài.1.Cho 2 số hữu tỉ\(\frac{a}{b}\)và\(\frac{c}{d}\)(b>0,d>0) chứng tỏ rằng
a)Nếu\(\frac{a}{b}\)<\(\frac{c}{d}\) thì a,d<b,c
b)Nếu a,d<b,c thì\(\frac{a}{b}\)<\(\frac{c}{d}\)
Bài.2.Chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0)
Thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
a) phải là a.d<b.c
chứ ko phải a,d<b,c đâu