Những câu hỏi liên quan
Mờ Lem
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 15:43

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

Bình luận (1)
 Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:05

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

Bình luận (0)
 Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:13

À dạ thôi oke, em hiểu rồi((: 

Bình luận (0)
 Khách vãng lai đã xóa
Ái Kiều
Xem chi tiết
Funny Suuu
Xem chi tiết
Minh Nguyen
22 tháng 3 2020 lúc 16:02

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

Bình luận (0)
 Khách vãng lai đã xóa
꧁WღX༺
Xem chi tiết
Tran Le Khanh Linh
24 tháng 3 2020 lúc 20:14

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

Bình luận (0)
 Khách vãng lai đã xóa
susamogus
28 tháng 3 2023 lúc 18:17

mik thắc mắc tại sao 3a lại mất vậy

 

Bình luận (0)
Phan Chí Công
Xem chi tiết
bùi huyền trang
Xem chi tiết
Lê Lan Hương
Xem chi tiết
Vũ Nguyễn Phương Thảo
Xem chi tiết
Tô Hoài An
25 tháng 2 2020 lúc 19:54

\(A=\left(\frac{1-a^3}{a-a^2}+1\right)\cdot\left(\frac{1+a^3}{1+a}-a\right):\frac{\left(1-a^2\right)^3}{1+a}\)

\(=\left(\frac{\left(1-a\right)\cdot\left(1+a+a^2\right)}{a\cdot\left(1-a\right)}+1\right)\cdot\left(\frac{\left(1+a\right)\left(1-a+a^2\right)}{1+a}-a\right)\)\(:\frac{\left(1-a\right)^3\cdot\left(1+a\right)^3}{1+a}\)

\(=\left(\frac{1+a+a^2+a}{a}\right)\cdot\left(1-a+a^2-a\right):\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\frac{1+2a+a^2}{a}\cdot\left(1-2a+a^2\right):\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\frac{\left(1+a\right)^2}{a}\cdot\left(1-a\right)^2:\left[\left(1-a\right)^3\cdot\left(1+a\right)^2\right]\)

\(=\text{[}\frac{\left(1+a\right)^2}{a}:\left(1+a\right)^2\text{]}\cdot\text{[}\left(1-a\right)^2:\left(1-a\right)^3\text{]}\)

\(=\frac{1}{a}\cdot\frac{1}{1-a}=\frac{1}{a\left(1-a\right)}=\frac{1}{a-a^2}\)

Để \(A>A^2\Rightarrow\frac{1}{a-a^2}>\frac{1}{\left(a-a^2\right)^2}\)

Có ĐKXĐ : \(\left(a-a^2\right)\ne0\)

Mà \(\left(a-a^2\right)< \left(a-a^2\right)^2\)trừ trường hợp \(\left(a-a^2\right)=1\)

Từ tất cả điều trên suy ra : \(A\)thuộc tất cả các giá trị khác 1 để \(A>A^2\)

Bình luận (0)
 Khách vãng lai đã xóa
shoppe pi pi pi pi
Xem chi tiết