Cho \(B=\frac{x^3}{1+y}+\frac{y^3}{1+x}\) trong đó \(x,y,z\) là các số dương thỏa mãn điều kiện \(xy=1\) . Chứng minh \(B\ge4\)
Cho \(B=\frac{x^3}{1+y}+\frac{y^3}{1+x}\) trong đó \(x,y\) là các số dương thỏa mãn điều kiện \(xy=1\) . Chứng minh \(B\ge4\)
Yêu cầu chứng minh \(B\ge1\) là đáp án đúng cho bài toán này.
Không giải!
Cho \(B=\frac{x^3}{1+y}+\frac{y^3}{1+x},\) trong đó, \(x,y\) là các số dương thỏa mãn điều kiện \(xy=1\)
Chứng minh: \(B\ge1\)
\(~~~~~~~~~~~~~~~~~~~~~~~~~~~\)
Trước hết, ta thực hiện công đoạn áp dụng bất đẳng thức \(AM-GM\) cho bốn số dương có dạng sau:
\(\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{x}{2}+\frac{1}{2}\ge4\sqrt[4]{\frac{x^3}{\left(1+y\right)}.\frac{\left(1+y\right)}{4}.\frac{x}{2}.\frac{1}{2}}=4\sqrt[4]{\frac{x^4}{16}}=2x\)
Khi đó, ta xây dựng được một bất đẳng thức cho riêng phân số \(\frac{x^3}{1+y}\) bằng cách suy ra từ kết quả vừa chứng minh ở trên:
\(\frac{x^3}{1+y}\ge\frac{3x}{2}-\frac{1}{2}-\frac{1+y}{4}\)
Đổi biến theo vòng hoán vị \(y\rightarrow x,\) từ đây, ta thiết lập được đánh giá tương tự như sau, điển hình:
\(\frac{y^3}{1+x}\ge\frac{3y}{2}-\frac{1}{2}-\frac{1+x}{4}\)
Kết hợp hai bất đẳng thức vừa chứng minh ở trên, ta có đánh giá sau:
\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{3x}{2}-\frac{1}{2}-\frac{1+y}{4}+\frac{3y}{2}-\frac{1}{2}-\frac{1-x}{4}\)
Biến đổi vế phải của bất đẳng thức trên, ta suy ra được:
\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{5\left(x+y\right)-6}{4}\)
Hơn nữa, theo một kết quả quen thuộc, ta có:
\(x+y\ge2\sqrt{xy}=2\)(sử dụng giả thiết \(xy=1\) để suy ra đánh giá mới cho bài toán)
Do đó,
\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\ge\frac{5.2-6}{4}=1\)
\(\Rightarrow\) \(B\ge1\)
Cuối cùng, với \(x=y=1\) (thỏa mãn điều kiện) thì \(B=1\) nên ta suy ra \(1\) là giá trị nhỏ nhất của biểu thức \(B\)
Phép chứng minh hoàn tất.
Cho \(B=\frac{x^3}{1+y}+\frac{y^3}{1+x}\)trong đó x,y là các số thỏa mãn điều kiện xy=1. chứng minh rằng \(B\ge1\)
Ta có \(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^4}{4\left(x+y+2\right)}=\frac{a^4}{4\left(a+2\right)}\)
Ta có \(x+y\ge2\sqrt{xy}=2\Rightarrow a\ge2\)
Ta cần \(\frac{a^4}{4\left(a+2\right)}\ge1\Leftrightarrow a^4\ge4a+8\Leftrightarrow\frac{1}{2}a^4+\frac{1}{2}a^4\ge4a+8\)
Ta có\(\frac{1}{2}a^4\ge\frac{1}{2}.16=8;a^3\ge8\Rightarrow\frac{1}{2}a^4\ge4a\Rightarrow a^4\ge4a+8\)
=> B>=1
dấu = xảy ra <=> x=y=1
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
a) Chứng minh với mọi số thực a,b,c a cs \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
Cho x,y,z là các số thực thỏa mãn điều kiện: \(x+y+z=3\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\).
Chứng minh rằng ít nhất một trong ba số x,y,z bằng 3.
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)
mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)
Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)
\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)
\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)
\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)
Lại có: \(x+y=x-z+y-z+2z\)
\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)
Cho các số dương x, y, z thỏa mãn điề kiện \(\frac{1}{x}-\frac{1}{y}=\frac{1}{y}-\frac{1}{z}\). CMR: \(\frac{x+y}{2x-y}+\frac{y+z}{2z-y}\ge4\)
cho 3 số dương x,y,z thỏa mãn điều kiện\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=1\)
chứng minh rằng \(\sqrt{\frac{y}{x}}+\sqrt{\frac{z}{y}}+\sqrt{\frac{x}{z}}\le1\)
\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)
\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)