Cm: \(a^3+b^3\) chia hết cho 3 và chỉ khi a+b mới chia hết cho 3
Cm: a^3 +b^3 chia hết cho 3 và chỉ khi a+b mới chia hết cho 3
\(a^3+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(a^3+b^3\) chia hết cho 3
\(\Leftrightarrow a+b\) chia hết cho 3 (đpcm)
cho a, b là các số nguyên. chứng minh rằng a^3+b^3 chia hết cho 3 khi và chỉ khi a +b chia hết cho 3
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
mà \(a^3+b^3⋮3\)
và \(3ab\left(a+b\right)⋮3\)
nên \(a+b⋮3\)
Cho a,b là các số nguyên. CMR \(a^3+b^3\)chia hết cho 3 khi và chỉ khi a+b chia hết cho 3
\(a^3+b^3⋮3\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)⋮3\)
\(+,a^2-ab+b^2⋮3\Leftrightarrow a^2+2ab+b^2⋮3\Leftrightarrow\left(a+b\right)^2⋮3\Rightarrow a+b⋮3\)
\(\Rightarrow dpcm\)
Giúp mình với!
Cho a, b là các số nguyên. chứng minh rằng a^3 + b^3 chia hết cho 3 khi và chỉ khi a + b chia hết cho 3.
Xét hiệu a3 + b3 - ( a + b ) ta có :
a3 + b3 - ( a + b ) = a3 + b3 - a - b = ( a3 - a ) + ( b3 - b ) = a( a2 - 1 ) + b( b2 - 1 ) = a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 )
Vì a,b nguyên nên a , a - 1 , a + 1 và b , b - 1 , b + 1 là 3 số nguyên liên tiếp
=> a( a - 1 )( a + 1 ) ⋮ 3 và b( b - 1 )( b + 1 ) ⋮ 3
=> a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 ) ⋮ 3 hay a3 + b3 - ( a + b ) ⋮ 3
mà a + b ⋮ 3 => a3 + b3 ⋮ 3 ( đpcm )
Cho a b c là các số nguyên
chứng minh a^3+b^3+c^3 chia hết 3 khi và chỉ khi a+b+c chia hết cho 3
a^3-a =(a-1)a(a+1)
chứng minh rằng a+b+c chia hết cho 6 khi và chỉ khi a^3+b^3+c^3 chia hết cho 6
Thiếu điều kiện a,b,c thuộc Z
Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6
CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)
-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)
=>đpcm
Chứng minh a3+b3 chia hết cho 6 khi và chỉ khi a+b chia hết cho 6
Xét hiệu a3 + b3 - (a + b) = a3 - a + b3 - b = a(a2 - 1) + b(b2 - 1)
= (a - 1)a(a + 1) + (b - 1)b(b + 1)
Nhận thấy (a - 1)a(a + 1) \(⋮6\) (tích 3 số nguyên liên tiếp)
và \(\left(b-1\right)b\left(b+1\right)⋮6\)
=> (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6
=> a3 + b3 - (a + b) \(⋮\)6
=> a3 + b3 \(⋮\)6 khi và chỉ khi a + b \(⋮\)6
Chứng minh rằng a+2b chia hết cho 3 khi và chỉ khi b+2a chia hết cho 3.
Ta có : \(3a+3b\)và \(a+2b\)đều chia hết cho 3
\(\Rightarrow\left(3a+3b\right)-\left(a+2b\right)⋮3\)
\(\Rightarrow2a+b⋮3\)\(\left(đpcm\right)\)
Chứng minh rằng: a+2b Chia hết cho 3 khi và chỉ khi b+2a chia hết cho 3
Ta có : 3a + 3b và a + 2b đều chia hết cho 3.
\(\Rightarrow\)( 3a + 3b ) - ( a + 2b ) chia hết cho 3.
\(\Rightarrow\)2a + b chia hết cho 3 ( đpcm )
Ta có : \(CM:\Rightarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(\left(a+2b\right)⋮3\Rightarrow b+2a⋮3\)( 1 )
\(CM:\Leftarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(b+2a⋮3\Rightarrow a+2b⋮3\)( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow a+2b⋮3\Leftrightarrow b+2a⋮3\left(Đpcm\right)\)
Chúc bạn học tốt !!!