tính
\(\sqrt{2}.\sqrt{4-\sqrt{7}}\)
giúp mình với
tính
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}-\sqrt{2}\)
giúp mình với
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}-\sqrt{2}\)
\(=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7-2\sqrt{7}.1+1}}{\sqrt{2}}-\dfrac{\sqrt{7+2\sqrt{7}.1+1}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=-\dfrac{2}{\sqrt{2}}\)
\(=-\sqrt{2}\)
\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}..\)
\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
Tính
Giúp mình với mình cần gấp
+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)
\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
\(=4\sqrt{5}\)
+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=7+7\sqrt{8}\)
1) Tính:
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5-1}}\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
Giúp mình với, mình cần gấp
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{14+6\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\sqrt{5^2}+2.3\sqrt{5}+3^2}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\left(\sqrt{5}+3\right)^2}-\dfrac{4}{\sqrt{5}-1}\\ =\left|\sqrt{5}+3\right|-\dfrac{4}{\sqrt{5}-1}\\ =\dfrac{\left(\sqrt{5}+3\right)\left(\sqrt{5}-1\right)-4}{\sqrt{5}-1}\\ =\dfrac{2+2\sqrt{5}-4}{\sqrt{5}-1}\\ =\dfrac{-2+2\sqrt{5}}{\sqrt{5}-1}\\ =\dfrac{2\left(-1+\sqrt{5}\right)}{\sqrt{5}-1}\\ =2\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\\ =3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}.\sqrt{3}-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{9-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}\\ =1\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\\ =\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}\\ =\dfrac{27\sqrt{6}+18\sqrt{2}-18\sqrt{2}-4\sqrt{6}}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}\\ =\dfrac{23\sqrt{6}}{54-8}\\ =\dfrac{23\sqrt{6}}{46}\\ =\dfrac{\sqrt{6}}{2}\)
Câu b á bạn, chỗ \(\dfrac{4}{\sqrt{5-1}}\) là đề như vậy hay là \(\dfrac{4}{\sqrt{5}-1}\) vậy?
Tính
\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)
GIÚP MÌNH VỚI MÌNH ĐANG RẤT CẦN
Trả lời:
\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{6.\left(3-\sqrt{3}\right)}{9-3}-\frac{7-\sqrt{7}}{\sqrt{7}-1}\)
\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{4}+\frac{6.\left(3-\sqrt{3}\right)}{6}-\frac{\sqrt{7}.\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)
\(=3\)
Học tốt
giải giúp mình bài này với
\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}-1+2-\sqrt{3}\)
=1
Tính:
\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}+\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}+\frac{1}{\sqrt{8}-\sqrt{9}}\)
Giúp mình với nhé. Cảm ơn
1. Tính:
A=\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{3}}\)
B= \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
C= \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{2+\sqrt{3}}\)
Giúp mình với ạ. Cảm ơn nhiều !!!
\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)
\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)
\(=\sqrt{5}+4+4-\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}+8\)
Ko biết đề sai ko?
Cj gì ơi , mặc dù em không biết làm bài của cj e mới có lớp 7 thui
Nhưng .... e iu cái ảnh 4D trong hình đại diện của cj
Cj có phải ARMY ko zợ , nếu phải cho e kb nha , ko phải cx dc ạ !!!
Đừng anti tui nhé , mọi người , mơn nhìu !!!
~ HOK TỐT ~
Chỗ bạn tách 24 thành 5 với 16 ấy, 2 số đó cộng lại không bằng 24, mình bấm máy tính ra kết quả khác, còn đề trong vở ghi ra là đúng mà không biết lúc chép vở có sai gì không nữa. Cảm ơn nhiều ạ
BT1: Cho A = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
B = \(\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Tính A.B và A-B
BT2: Tính A = \(\sqrt{4+\sqrt{7}}\)- \(\sqrt{4-\sqrt{7}}\) - \(\sqrt{2}\)
BT3: Rút gọn:
C = \(\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}\) + \(\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
GIÚP MÌNH VỚI Ạ MÌNH CẦN GẤP LẮM
Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))
BT1:
Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{16-10-2\sqrt{5}}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
Từ đó thay vào: \(\left(A-B\right)^2\)
\(=A^2-2AB+B^2\)
\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)
\(=10-2\sqrt{5}\)
\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)
BT2:
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\cdot3=2\)
\(\Rightarrow B=\sqrt{2}\)
\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
BT3:
đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)
\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)
\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)
\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)
\(C=\frac{4x^2+8x}{4x+8}=x\)
Vậy C = x
\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
TÍNH
GIúp mình với các bạn
\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}..\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}.\)
= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(1+\sqrt{2}\right).\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right).\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1.\)