Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Bảo Hà Đình
Xem chi tiết
ILoveMath
1 tháng 8 2021 lúc 9:27

\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}-\sqrt{2}\)

\(=\dfrac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}-\dfrac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7-2\sqrt{7}.1+1}}{\sqrt{2}}-\dfrac{\sqrt{7+2\sqrt{7}.1+1}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)

\(=-\dfrac{2}{\sqrt{2}}\)

\(=-\sqrt{2}\)

chi mai Nguyen
Xem chi tiết
Nguyễn Việt Hoàng
17 tháng 8 2020 lúc 12:42

+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)

\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)

\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)

\(=4\sqrt{5}\)

+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=7+7\sqrt{8}\)

Khách vãng lai đã xóa
123 nhan
Xem chi tiết
YangSu
14 tháng 8 2023 lúc 8:49

\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{14+6\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\sqrt{5^2}+2.3\sqrt{5}+3^2}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\left(\sqrt{5}+3\right)^2}-\dfrac{4}{\sqrt{5}-1}\\ =\left|\sqrt{5}+3\right|-\dfrac{4}{\sqrt{5}-1}\\ =\dfrac{\left(\sqrt{5}+3\right)\left(\sqrt{5}-1\right)-4}{\sqrt{5}-1}\\ =\dfrac{2+2\sqrt{5}-4}{\sqrt{5}-1}\\ =\dfrac{-2+2\sqrt{5}}{\sqrt{5}-1}\\ =\dfrac{2\left(-1+\sqrt{5}\right)}{\sqrt{5}-1}\\ =2\)

\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\\ =3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)

\(=\dfrac{3\sqrt{3}.\sqrt{3}-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{9-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}\\ =1\)

\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\\ =\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}\\ =\dfrac{27\sqrt{6}+18\sqrt{2}-18\sqrt{2}-4\sqrt{6}}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}\\ =\dfrac{23\sqrt{6}}{54-8}\\ =\dfrac{23\sqrt{6}}{46}\\ =\dfrac{\sqrt{6}}{2}\)

123 nhan
14 tháng 8 2023 lúc 7:43

Giải chi tiết từng bước nha

YangSu
14 tháng 8 2023 lúc 8:36

Câu b á bạn, chỗ \(\dfrac{4}{\sqrt{5-1}}\) là đề như vậy hay là \(\dfrac{4}{\sqrt{5}-1}\) vậy?

Hà Khánh Dung
Xem chi tiết
Kiyotaka Ayanokoji
31 tháng 7 2020 lúc 10:57

Trả lời:

\(\frac{4}{\sqrt{7}-\sqrt{3}}+\frac{6}{3+\sqrt{3}}+\frac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{7-3}+\frac{6.\left(3-\sqrt{3}\right)}{9-3}-\frac{7-\sqrt{7}}{\sqrt{7}-1}\)

\(=\frac{4.\left(\sqrt{7}+\sqrt{3}\right)}{4}+\frac{6.\left(3-\sqrt{3}\right)}{6}-\frac{\sqrt{7}.\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

\(=3\)

Học tốt 
 

Khách vãng lai đã xóa
Huỳnh Thị Thanh Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 15:10

\(\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3}-1+2-\sqrt{3}\)

=1

Lê Thảo Linh
Xem chi tiết
Minh Triều
4 tháng 9 2015 lúc 12:28

Dễ thui        

Oh Sehun
12 tháng 9 2016 lúc 20:48

I LOVE DƯƠNG DƯƠNG
 

Huỳnh Diệu Linh
Xem chi tiết
Nguyễn Thị Bích Ngọc
30 tháng 6 2018 lúc 11:40

\(A=\sqrt{24+8\sqrt{5}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{5+2.4\sqrt{5}+16}+\sqrt{4-2.2\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{5}+4\right)}^2+\sqrt{\left(2-\sqrt{3}\right)}^2\)

\(=|\sqrt{5}+4|+|2-\sqrt{3}|\)

\(=\sqrt{5}+4+4-\sqrt{3}\)

\(=\sqrt{5}-\sqrt{3}+8\)

Ko biết đề sai ko?

Suu ARMY
30 tháng 6 2018 lúc 11:09

Cj gì ơi , mặc dù em không biết làm bài của cj e mới có lớp 7 thui 

Nhưng .... e iu cái ảnh 4D trong hình đại diện của cj 

Cj có phải ARMY ko zợ , nếu phải cho e kb nha , ko phải cx dc ạ !!!

Đừng anti tui nhé , mọi người , mơn nhìu !!!

~ HOK TỐT ~

Huỳnh Diệu Linh
30 tháng 6 2018 lúc 11:51

Chỗ bạn tách 24 thành 5 với 16 ấy, 2 số đó cộng lại không bằng 24, mình bấm máy tính ra kết quả khác, còn đề trong vở ghi ra là đúng mà không biết lúc chép vở có sai gì không nữa. Cảm ơn nhiều ạ

Ariels spring fashion
Xem chi tiết
Nguyễn Minh Đăng
19 tháng 10 2020 lúc 17:31

Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))

BT1:

Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=\sqrt{16-10-2\sqrt{5}}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

Từ đó thay vào: \(\left(A-B\right)^2\)

\(=A^2-2AB+B^2\)

\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)

\(=10-2\sqrt{5}\)

\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)

BT2:

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\cdot3=2\)

\(\Rightarrow B=\sqrt{2}\)

\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
19 tháng 10 2020 lúc 17:38

BT3:

đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)

\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)

\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)

\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)

\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)

\(C=\frac{4x^2+8x}{4x+8}=x\)

Vậy C = x

Khách vãng lai đã xóa
Truyen Vu Cong Thanh
Xem chi tiết
Vũ Trọng Nghĩa
7 tháng 8 2016 lúc 1:57

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}..\)

    = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}.\)

  = \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(1+\sqrt{2}\right).\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right).\left(\sqrt{2}-1\right)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1.\)