Tìm x , y \(\in\) Z biết 1/8 < x/18 < 2y/24 < 2/9
Tìm x,y\(\in\)Z
3x+1/18+2y/12=2/9 biết x-y=-1
a) tìm x,y,z biết rằng \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z
=>
y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2
=> 2 = 1/ x+y+z => x+y+z=1/2
sau đó áp dụng tính chất dãy tỉ số = hau
Tìm x; y ;z biết 1+2y/18=1+4y/24=1+6y/6x
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
tìm x,y và z biết :
a) x/5=y/3=z/6 và 3x-2y+2z = 24
b) x/2=y/3=z/4 và x+z=18
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)
áp dụng tính chất dãy tỉ số bn ta có
\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)
đề bài câu a xem lại nhé
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\)\(x=3.2=6\)
\(y=3.3=9\)
\(z=3.4=12\)
ADTC dãy t/s bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
B1 : Tìm các số x,y,z biết :
a) x : y : z = 3 : 4 : 5 và 2x2 + 2y2 - 3z2 = -100
B2 :
a ) Tìm các số \(\frac{_{a_1-1}}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}\)và a1 + a2 +a3 + ... + a9 = 90
b) Tìm x biết rằng :
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)
=>(x;y;z)=(6;8;10),(-6;-8;-10)
B2
Ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)
=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)
=>a1=a2=......=a9=10
Tìm x,y,z biết
a) \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
b) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=x+y=z\)
Tìm x,y,z biết
a) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=x+y+z\)
b) \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
tìm x,y,z: biết (1+2y)/18=(1+4y)/24=(1+6y)/6x=(1+8y)/(27z)
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
a.tìm x biết:
1+2y/18 = 1+4y/24 = 1 +6y/6x
b. tìm x, y, z biết
y+z+1/x = x+z+2/y = 1/x+y+z = x+y+z/z
a)
Ta có \(\frac{1+2y}{18}=\frac{1+4y}{24}.\)
\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)
\(\Rightarrow24+48y=18+72y\)
\(\Rightarrow24-18=72y-48y\)
\(\Rightarrow6=24y\)
\(\Rightarrow y=6:24\)
\(\Rightarrow y=\frac{1}{4}.\)
+ Thay \(y=\frac{1}{4}\) vào đề bài ta được:
\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\Rightarrow\frac{1}{12}=\frac{\frac{5}{2}}{6x}\)
\(\Rightarrow12.\frac{5}{2}=6x\)
\(\Rightarrow30=6x\)
\(\Rightarrow x=30:6\)
\(\Rightarrow x=5\)
Vậy \(\left(x;y\right)=\left(5;\frac{1}{4}\right).\)
Chúc bạn học tốt!