Chứng minh trong tập N chỉ có 3 số lẻ liên tiếp 3,5,7 là số nguyên tố
Chứng minh rằng :
a) 2 và 3 là hai số tự nhiên liên tiếp đều là số nguyên tố.
b) 3,5,7 là ba số lẻ liên tiếp đểu là số nguyên tố.
Ban lam giup minh
Tinh nhanh lop 4
42 x 43 - 12 x 9 - 42 x 3
chứng minh rằng ngoài 3,5,7 thì không còn bất cứ 3 số lẻ liên tiếp nào là 3 số nguyên tố
Giả sử còn 3 số lẻ liên tiếp là 3 số nguyên tố khác 3,5,7 là 2a+1,2a+3,2a+5.
Vì đây là 3 số lẻ liên tiếp nên sẽ có 1 số trong dãy số 2a+1,2a+3,2a+5 chia hết cho 3. Vì 2a+1>3 =>2a+3,2a+5>3 => có 1 số bất kì chia hết cho 3 nên là hợp số. do đó điều giả sử trên sai. Vậy chỉ có 3 số 3,5,7 là 3 số nguyên tố thỏa mãn bài toán
Chứng minh chỉ có 3 số nguyên tố lẻ liên tiếp 3;5;7
Gọi 3 số nguyên tố lẻ liên tiếp là a ; a + 2 ; a + 4 (a là số nguyên tố lẻ)
- Nếu a = 3 thì có ba số 3;5;7 thỏa mãn đề bài.
- Nếu a > 3 thì a = 3k + 1 hoặc a = 3k + 2 (k \(\in\) N*)
+) Với a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, là hợp số, loại.
+) Với a = 3k + 2 thì a + 4 = 3k + 6 = 3.(k + 2) chia hết cho 3, là hợp số, loại.
Vậy chỉ có 3 số nguyên tố lẻ liên tiếp là 3;5;7.
Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên
Vì tập hợp N chỉ bao gồm các số tự nhiên nên sẽ có ba số lẻ liên tiếp là số nguyên.
tất nhiên là vậy 3,5,7 thuộc N
và cũng thuộc Z
đúng 100%
làm vậy sẽ đc 10 điểm
Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên
dĩ nhiên rồi vì số lẻ là tập con của N
mà N là tập con của Z( số nguyên )
=> điều phải chứng minh
mà đề bạn viết sai đề rồi phải là :Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên tố
thì khi ấy cặp ba số là :(1,3,5)
Các số 3,5,7 là ba số lẻ liên tiếp và đều là số nguyên tố.Hãy tìm tất cả các bộ ba so lẻ liên tiếp va đều là các số nguyên tố
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau