Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thúy
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Tran Le Khanh Linh
3 tháng 5 2020 lúc 13:32

\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)

Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)

Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn

Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x

Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)

Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)

Vậy x=1; y=2

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Witch Rose
Xem chi tiết
Trần Tuấn Trọng
Xem chi tiết
Long
Xem chi tiết
nguyen hoang phi hung
Xem chi tiết
Phạm Văn An
11 tháng 4 2016 lúc 13:26

* Nếu y <0 => Dễ thấy VT dương; VP âm => vô lí => vô nghiệm.

* Với y>=0:

Áp dụng BĐT Cô-si cho các số thực không âm ta có:

x2 + 1 $\ge $2IxI Xảy ra dấu bằng khi x = 1 hoặc -1

x2 + y2 $\ge $2IxIy Xảy ra dấu bằng khi x = y hoặc -y

=> (x2 + 1)(x2 + y2)$\ge $4x2y

Xảy ra dấu bằng khi và chỉ khi x = y = 1 hoặc x = -1; y = 1

Vậy tìm được 2 cặp số (x; y) thoả mãn đề bài là (1; 1) và (-1; 1)

Minh Hiếu
Xem chi tiết
Trên con đường thành côn...
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)