Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Hải
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 9 2016 lúc 18:21

Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)

\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)

Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017

oát đờ
Xem chi tiết
Nguyen Thi Phung
14 tháng 6 2017 lúc 20:59

a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)

=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)

=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)

=\(\sqrt{2}+\sqrt{3}+1\)

Nguyễn Hà Lan Anh
Xem chi tiết
alibaba nguyễn
16 tháng 9 2016 lúc 12:50

Đặt 2017 = a thì ta có 

A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)

\(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)

= a

Vậy cái đó bằng 2017

kaitouzoe
Xem chi tiết
Witch Rose
7 tháng 7 2017 lúc 22:01

Với mọi \(n\in N.\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó

\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)

Uyển Nghi
Xem chi tiết
phan thị minh anh
24 tháng 9 2016 lúc 20:41

\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)

Lưu Như Ý
Xem chi tiết
Phan Thanh Tịnh
24 tháng 4 2017 lúc 19:49

Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016

Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017

=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)

2016D = 2016 + 20162 + 20163 + ... + 20162017

=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)

\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)

Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)

= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015

= 20172017.20162017 - 20172017.2016 + 20162017.2015

= 20172017.(20162017 - 2016) + 20162017.2015 > 0

=> A > B

Nguyễn Tuấn Minh
24 tháng 4 2017 lúc 19:46

Ta có 

\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)

\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)

\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)

\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)

Có 20172017>20162017 ;  20172016>20162016 ;  20172015>20162015;..... ; 2017>2016

=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)

=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)

=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)

Thiên An
24 tháng 4 2017 lúc 19:58

Xét biểu thức  \(N=1+k+k^2+k^3+...+k^n\) (1) với k là số tự nhiên lớn hơn 1

Ta có \(k.N=k+k^2+k^3+k^4+...+k^{n+1}\) (2)

Lấy (2) - (1) ta được:

\(\left(k-1\right)N=\left(k+k^2+k^3+k^4+...+k^{n+1}\right)-\left(1+k+k^2+k^3+...+k^n\right)=k^{n+1}-1\)

Suy ra  \(N=\frac{k^{n+1}-1}{k-1}\) 

Áp dụng với k = 2017; n = 2016 ta được \(1+2017+2017^2+...+2017^{2016}=\frac{2017^{2017}-1}{2016}\)

Áp dụng với k = 2016; n = 2016 ta được \(1+2016+2016^2+...+2016^{2016}=\frac{2016^{2017}-1}{2015}\)

\(A=\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2016.2017^{2017}}{2017^{2017}-1}>1\) 

Tương tự  \(B=\frac{2015.2016^{2017}}{2016^{2017}-1}>1\)

Mặt khác: Tử số A > tử số B; mẫu A > mẫu B => A < B.

Ngân PéPỳ
Xem chi tiết
Vy Nguyễn Đặng Khánh
Xem chi tiết
Nguyen Ngoc Tram
Xem chi tiết