Tính A=\(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
tính: \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
Xét với x > 0 : \(\sqrt{1+\left(x-1\right)^2+\frac{\left(x-1\right)^2}{x^2}}+\frac{x-1}{x}=\sqrt{\frac{\left(x^2-x+1\right)^2}{x^2}}+\frac{x-1}{x}\)
\(=\frac{x^2-x+1}{x}+\frac{x-1}{x}=\frac{x^2}{x}=x\)
Áp dụng với x = 2017 suy ra biểu thức cần tính có giá trị bằng 2017
Tính:
a. \(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
b. \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
a )\(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
=\(\sqrt{2+3+1+2\sqrt{2.1+2\sqrt{3}.1+2\sqrt{2}.\sqrt{3}}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{3}+1\right)^2}\)
=\(\sqrt{2}+\sqrt{3}+1\)
không dùng máy tính hãy tính
\(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}\)\(+\frac{2016}{2017}\)
Đặt 2017 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
= \(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)
= a
Vậy cái đó bằng 2017
Tính P=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Với mọi \(n\in N.\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó
\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3+3\sqrt{4}}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Tính giá trị của biểu thức .
\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}=1-\frac{1}{\sqrt{2007}}=\frac{\sqrt{2007}-1}{\sqrt{2007}}\)
So sánh A=\(\frac{2017^{2017}}{1+2017+2017^2+....+2017^{2016}}\)
B=\(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016
Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017
=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)
2016D = 2016 + 20162 + 20163 + ... + 20162017
=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)
\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)
Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)
= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015
= 20172017.20162017 - 20172017.2016 + 20162017.2015
= 20172017.(20162017 - 2016) + 20162017.2015 > 0
=> A > B
Ta có
\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)
\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)
\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)
\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)
Có 20172017>20162017 ; 20172016>20162016 ; 20172015>20162015;..... ; 2017>2016
=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)
=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)
=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)
Xét biểu thức \(N=1+k+k^2+k^3+...+k^n\) (1) với k là số tự nhiên lớn hơn 1
Ta có \(k.N=k+k^2+k^3+k^4+...+k^{n+1}\) (2)
Lấy (2) - (1) ta được:
\(\left(k-1\right)N=\left(k+k^2+k^3+k^4+...+k^{n+1}\right)-\left(1+k+k^2+k^3+...+k^n\right)=k^{n+1}-1\)
Suy ra \(N=\frac{k^{n+1}-1}{k-1}\)
Áp dụng với k = 2017; n = 2016 ta được \(1+2017+2017^2+...+2017^{2016}=\frac{2017^{2017}-1}{2016}\)
Áp dụng với k = 2016; n = 2016 ta được \(1+2016+2016^2+...+2016^{2016}=\frac{2016^{2017}-1}{2015}\)
\(A=\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2016.2017^{2017}}{2017^{2017}-1}>1\)
Tương tự \(B=\frac{2015.2016^{2017}}{2016^{2017}-1}>1\)
Mặt khác: Tử số A > tử số B; mẫu A > mẫu B => A < B.
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
So sánh A= \(\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}\)
B= \(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)
SO SÁNH:
A = \(\frac{2017^{2017}}{1+2017+2017^2+...+2017^{2016}}\)
B = \(\frac{2016^{2017}}{1+2016+2016^2+...+2016^{2016}}\)