-\(\frac{5}{6}\) . x -1\(\frac{13}{19}\) : 3\(\frac{7}{19}\) - (-0,12) = (-\(\frac{1}{2}\))
Tìm x
\(\frac{-5}{6}x-1\frac{13}{19}:3\frac{7}{19}-\left(-0,12\right)\)\(=\left(\frac{-1}{2}\right)^2\)
\(-\frac{5}{6}x-1\frac{13}{19}:3\frac{7}{19}-\left(-0,12\right)=\left(-\frac{1}{2}\right)^2\)
\(\Rightarrow-\frac{5}{6}x-\frac{32}{19}:\frac{64}{19}+0,12=\frac{1}{4}\)
\(\Rightarrow-\frac{5}{6}x-\frac{1}{2}=\frac{1}{4}-0,12=\frac{13}{100}\)
\(\Rightarrow-\frac{5}{6}x=\frac{63}{100}\)
\(\Rightarrow x=-\frac{189}{250}\)
-5/6x-32/19:64/19+3/25=1/4
-5/6x-32/19×19/64+3/25=1/4
-5/6x-1/2+3/25=1/4
-5/6x-31/50=1/4
-5/6x=1/4+31/50
-5/6x=87/100
x=87/100:-5/6
x=87/100×-6/5
x=-261/250
vậy x=-261/250
\(\frac{-5}{6}x-1\frac{13}{19}\div3\frac{7}{19}-\left(-0.12\right)=\left(\frac{-1}{2}\right)^2\)
\(\Leftrightarrow\frac{-5}{6}x-\frac{32}{19}\div\frac{64}{19}-\left(\frac{-3}{25}\right)=\frac{1}{4}\)
\(\Leftrightarrow\frac{-5}{6}x-\frac{32}{19}\times\frac{19}{64}+\frac{3}{25}=\frac{1}{4}\)
\(\Leftrightarrow\frac{-5}{6}x-\frac{1}{2}+\frac{3}{25}=\frac{1}{4}\)
\(\Leftrightarrow\frac{-5}{6}x-\frac{19}{50}=\frac{1}{4}\)
\(\Leftrightarrow\frac{-5}{6}x=\frac{63}{100}\)
\(\Leftrightarrow x=\frac{-189}{250}\)
Vậy \(x=\frac{-189}{250}\)
Học tốt nhé
1) Tính:
a) \(\frac{\left(1+\frac{17}{1}\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+\frac{19}{1}\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right).....\left(1+\frac{19}{17}\right)}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)
c) \(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}\)
e) \(\frac{\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}\)
2) CMR: \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{800}}< \frac{1}{3}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Tính:
a) \(\frac{\left(1+\frac{17}{1}\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right).....\left(1+\frac{17}{19}\right)}{\left(1+\frac{19}{1}\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right).....\left(1+\frac{19}{17}\right)}\)
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)
c) \(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}\)
e) \(\frac{\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}\)
2) CMR: \(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{800}}< \frac{1}{3}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)
\(\frac{2}{7}.5\frac{1}{4}-\frac{2}{7}.3\frac{1}{4}\)
\(11\frac{3}{13}\)\(11\frac{3}{13}-\left(2\frac{4}{7}+5\frac{3}{13}\right)\)
\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\frac{5}{19}+\frac{8}{43}\)
\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+1\frac{5}{7}\)
\(\frac27\times5\frac14-\frac27\times3\frac14\)
=\(\frac27\times\left(5\frac14-3\frac14\right)\)
=\(\frac27\times\left(\left(5-3\right)+\left(\frac14-\frac15\right)\right)\)
=\(\frac27\times\left(2+0\right)\)
=\(\frac27\times2\)
=\(\frac47\)
a. M=\(\frac{75-\frac{6}{13}+\frac{3}{17}-\frac{3}{19}}{275-\frac{22}{13}+\frac{11}{17}-\frac{11}{19}}\)
b. B=\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\)\(\frac{\frac{1}{3}-0,25+0,2}{1\frac{1}{6}-0,875+0,7}\)
So sánh \(A\)với\(13\),biết rằng:
\(A=\frac{13}{15}+\frac{7}{5}+\frac{3}{4}+\frac{1}{5}+\frac{1}{7}+\frac{19}{20}+\frac{5}{4}+\frac{1}{3}+\frac{1}{6}+\frac{1}{13}+\frac{17}{23}+\frac{9}{8}+\frac{2}{5}+\frac{1}{7}+\frac{1}{25}+\frac{3}{2}+\frac{1}{8}+\frac{1}{19}+\frac{1}{9}+\frac{1}{97}\)
Bài 1: tính nhanh
a)\(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
b)\(\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)
c)\(\frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10\frac{19}{92}\)
d)\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{14}+1\frac{5}{7}\)
e)\(\frac{12}{19}.\frac{7}{15}.\frac{-13}{17}.\frac{19}{12}.\frac{17}{13}\)
1.\(\left(\frac{-6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{19}+\frac{9}{23}\right)\)
2.\(\frac{\frac{3}{7}-\frac{3}{-11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0,5-\frac{1}{3}+\frac{1}{4}}{\frac{-3}{2}+1-\frac{3}{4}}\)
1.\(\left(-\frac{6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{16}+\frac{9}{23}\right)\)
\(=6\left(-\frac{1}{5}+\frac{1}{16}-\frac{1}{23}\right):\left(-9\right)\left(\frac{-1}{5}+\frac{1}{16}-\frac{1}{23}\right)\)
\(=6:\left(-9\right)=-\frac{2}{3}\)
2. \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0.5-\frac{1}{3}+\frac{1}{4}}{-\frac{3}{2}+1-\frac{3}{4}}\)
\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{-3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}-\frac{1}{3}\)
\(=\frac{9}{13}-\frac{5}{15}=\frac{4}{15}\)
\(B=\frac{8}{3}.\frac{2}{5}.\frac{3}{8}.10.\frac{19}{92}\)
\(C=\frac{-5}{7}.\frac{2}{7}+\frac{-5}{7}.\frac{9}{14}+1\frac{5}{7}\)
\(D=\frac{12}{19}.\frac{7}{15}.\frac{-13}{17}.\frac{19}{12}.\frac{17}{13}\)
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
ta có;
b=8/3.2/5.3/8.10.19/92
b=16/15.3/8.10.19/92
b=2/5.10.19/92
b=4.19/92
b=19/23
c=-5/7.2/7+-5/7 . 9/14+1/5/7
c=-10/49+(-45)/98+1/5/5
c=131/98