Chứng minh \(\frac{5n^2+1}{6}\) là số tự nhiên thì \(\frac{n}{2};\frac{n}{3}\) là phân số tối giản
Chứng minh \(\frac{5n^2+1}{6}\)là số tự nhiên thì \(\frac{n}{2}\)và \(\frac{n}{3}\)là các phân số tối giản
vi 5n^2/6 co giá trị là số tự nhiên
=>5n^2+1 chia hết cho 6 mà 6=2.3,ƯCLN(2,3)=1
=>5n^2+1 chia het cho 2 va chia hết cho 3
+)5n^2+1 chia hết cho 2=>5n^2 ko chia hết cho 2 =>n^2 ko chia hết cho 2=>n ko chia hết cho2
vì 2 nguyên tố mà n ko chia hết cho 2=>n/2 la phân số tối giản(1)
+)5n^2+1 chia hết cho 3=>5n^2 ko chia hết cho 3=>n^2 ko chia hết cho 3=>n ko chia hết cho 3
vì 3 nguyên tố , mà n ko chia hết cho 3=>n/3 là phân số tối giàn(2)
(1)(2)=>dpcm
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>�22n tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>�33n tối giản
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Chứng tỏ rằng nếu phân số\(\frac{5n^2+1}{6}\)là số tự nhiên với n \(\in\)N thì các phân số \(\frac{n}{2}\)và \(\frac{n}{3}\)là các phân số tối giản.
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>�22n tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>�33n tối giản
chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\) là số tự nhiên với n \(\in\)N thì các phân số \(\frac{n}{2}\) và\(\frac{n}{3}\) là các phân số tối giản
Chứng minh rằng với số tự nhiên n > 2 thì \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không là số tự nhiên
chứng minh rằng với mọi số tự nhiên n thì
\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)có giá trj là một số tự nhiên
Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\) là số tự nhiên với n thuộc N thì các phân số \(\frac{n}{2}\)và \(\frac{n}{3}\) là các phân số tối giản.
đặt giả thuyết;
nếu 5n2 1 chia hết cho 6 suy ra 5n2 trừ 5 chia hêt cho 6
suy ra ( n trừ 1)(n+1) chia hết cho 6 (*)
giả sử n là số chẵn
suy ra (n TRỪ 1)(n+1) ko chia hết cho 2 ( trái với *)
suy ra n nguyên tố với 2 suy ra n/2 là phân số tối giản
giả sử n chia hết cho 3 suy ra (n TRỪ 1)(n+1) chia hết cho 3 ( trái với *)
suy ra n nguyên tố với 3 suy ra n/3 là phân số tối giản
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45