M là trung điểm của BC và AN =2BN
Chứng minh :C là trung điểm của AD
Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và AC. Vẽ điểm D và E sao cho N là trung điểm của BD và M là trung điểm của CE. Chứng minh rằng;
a) ∆ = ∆ AND CNB
b) AD = BC; AD // BC.
c) A là trung điểm của ED.
Các bạn giúp mình nhé. hình vẽ đại hơi xấu nha mọi người.
a: Xét ΔAND và ΔCNB có
NA=NC
\(\widehat{AND}=\widehat{CNB}\)
ND=NB
Do đó: ΔAND=ΔCNB
b: Xét tứ giác ABCD có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AD//BC và AD=BC
c: Xét tứ giác AEBC có
M là trung điểm của AB
M là trung điểm của EC
Do đó: AEBC là hình bình hành
SUy ra: AE//BC và AE=BC
mà AD//BC
và AD,AE có điểm chung là A
nên D,A,E thẳng hàng
mà AE=AD
nên A là trung điểm của ED
Bài 2: Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và AC. Vẽ điểm D và E sao cho N là trung điểm của BD và M là trung điểm của CE. Chứng minh rằng;
a) tam giác AND = tam giác CNB
b) AD = BC; AD // BC. c) A là trung điểm của ED.
(VẼ HÌNH LUÔN NHA!)
a) Xét ΔAND và ΔCNB có
NA=NC(N là trung điểm của AC)
\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)
ND=NB(N là trung điểm của BD)
Do đó: ΔAND=ΔCNB(c-g-c)
b) Ta có: ΔAND=ΔCNB(cmt)
nên AD=BC(hai cạnh tương ứng)
Ta có: ΔAND=ΔCNB(cmt)
nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)
mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC có M và N lần lượt là trung điểm của AB và AC. Lấy điểm E,D sao cho M,N là trung điểm của CE, BD.
a) chứng minh AD // BC
b) chứng minh A là trung điểm DE
c) gọi H,K là trung điểm ae và bc. chứng minh:3 điểm H,K,M thẳng hằng
cHO tam giác ABD ,O là trung điểm của BD . Lấy điểm M ,C và N sao cho B,O,D lần lượt là trung điểm AM,AC và AN . cHỨNG MINH
a, BC=ADVÀ BC//AD
b, tam giác ABD = TAM giác BMC
c, MC//BD
d, BA ĐIỂM M,C,N thẳng hàng
các cậu giúp toii với :((
Xét tam giác AOD và tam giác COB
có AO = OC (GT)
BO=OD (GT)
góc AOD = góc COB ( đối đỉnh)
suy ra tam giác AOD = tam giác COB (c.g.c)
suy ra BC=AD (hai cạnh tương ứng)
góc DAO = góc OCB (hai góc tương ứng)
Mà góc DAO so le trong góc OCB
suy ra AD//BC
b) Xét tam giác ABD và tam giác BMC
Có AD=BC (CMT)
góc DAB=góc CBM (đồng vị vì AD//BC)
AB=BM (GT)
suy ra tam giác ABD = tam giác BMC (c.g.c) (2)
c) Từ (2) suy ra góc DBA = góc CMB
mà góc DBA đồng vị với góc CMB
suy ra MC//BD (4)
d) Hoàn toàn tương tự
chứng minh tam giác AOB=tam giác COD (c.g.c) suy ra AB=CD (hai cạnh tương ứng)
góc ACD=góc CAB ( hai góc tương ứng)
mà góc ACD so e trong vớigóc CAB
suy ra AB//CD
Chứng minh tam giác NDC=tam giác DAB (c.g.c)
suy ra góc CND=góc BDA (hai góc tương ứng)
mà gócCND đồng vị với góc BDA
suy ra CN // BD (5)
Từ (4) và (5) suy ra Qua C kẻ hai đường thẳng CM và CN cùng song song với BD (trái với tiên đề Ơclit)
suy ra CM trùng với CN
hay ba điểm M,C,N thẳng hàng
Cho ∆ ABC. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ điểm D, E sao cho N là trung điểm BD, M là trung điểm CE.
Chứng minh rằng:
a) ∆AND = ∆CNB b) AD = BC; AD // BC c) A là trung điểm ED
Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và Ac, Vẽ điểm D và E sao cho N là trung điểm của BD và M là trung điểm cuat CE. Chứng minh rằng:
a)tam giác AND=tam giác CNB
b)AD=BC;AD /BC
c) A lad trung điểm của ED
a) Để chứng minh tam giác AND=tam giác CNB
Ta có: Xét tam giác AND và tam giác CNB
Có: AN=CN
^AND=^BNC
Vậy hai tam giác bằng nhau.
đpcm.
b) Khi tam giác AND=tam giác CNB
=>AD=BC(hai cạnh tương ứng)
Và^D=^B ( hai góc tương ứng)
Mà hai góc vị trí so le
Nên: \(\frac{AD}{BC}\)
đpcm.
c) Xét hai tam giác EMA và CMB
CM=EM
=> ^EMA=^BMC
=>hai tam giác bằng nhau
=>EA=CB (hai cạnh tương ứng)
Mà AD=CBvà EA = CB
=> AD=EA
=> A là trung điểm ED
đpcm.
cho tam giác ABC có AB = AC , Gọi D là trung điểm của cạnh BC
a, chứng minh tam giác ABD = tam giác ACD và AD vuông tại BC
b, vẽ DM vuông góc cs AB tại M . Trên cạnh AC lấy điểm N sao cho AN = AN . gọi I là giao điểm của AD và MN chứng minh AD vuông góc MN tia I
C, gọi K là trung điểm của CN , Trên tia DK lấy điểm E sao cho K là trung điểm của DE . Chứng minh M,N,E thẳng hàng
Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB và AC. Vẽ D, E sao cho N trung điểm của BD và M trung điểm của CE. Chứng minh:
a) tam giác AND=tam giác CNB
b) AD // BC, AD=BC
c) A là trung điểm của ED
a/ Xét tam giác AND và tam giác CNB ta có
\(\widehat{AND}=\widehat{CNB}\)(đối đỉnh)
AN = CN (N là trung điểm của AC )
ND = NB (N là trung điểm của BD)
\(\Rightarrow\)tam giác AND = tam giác CNB (c.g.c)
b/ Ta có tam giác AND=tam giác CNB (câu a)
=> AD=BC (2 cạnh tương ứng)
và \(\widehat{ADN}=\widehat{NBC}\)(2 góc tương ứng)
=> AD // BC ( vì có 2 góc so le trong bằng nhau)
c/ từ từ mk lm bận r
Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB, AC. Vẽ điểm D,E sao cho N trung điểm của BD và M trung điểm của CE. Chứng minh:
a) Tam giác AND= tam giác CNB
b) AD//BC, AD=BC
c) A là trung điểm của ED
a) xét tam giác AND và tam giác CNB, có
NA=NC( N là trung điểm của AC)
góc AND = g CNB
NB = ND (N là trung điểm của db)
Nên tg AND=tgCNB
b)- ta có góc ADN=GÓC NCB (TAM GIÁC AND=tam giác CNB)
Mà góc AND và góc NCB ở vị trí slt
suy ra AD//BC
- Lại có AD=BC (tg ADN = tg CBN)
. Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và AC. Lấy điểm D và E sao cho N là trung điểm của BD và M là trung điểm của CE. CMR: a) Tam giác AND = tam giác CNB b) AD=BC ; AD//BC c) A là trung điểm của ED.
a) Xét tam giác AND và tam giác CNB ta có:
NB = ND (Vì N là trung điểm của BD)
góc AND = góc CNB (đối đỉnh)
NA = NC (Vì N là trung điểm của AC)
=> tam giác AND = tam giác CNB (c-g-c)
b) Vì tam giác AND = tam giác CNB
=> AD = BC (2 cạnh tương ứng)
=> góc DAN = góc BCN (2 góc tương ứng)
mà góc DAN và góc BCN là 2 góc so le trong
suy ra AD // BC
c) chưa nghĩ ra