So sánh :
\(\left(-\frac{1}{27}\right)^{53}và\left(-\frac{1}{243}\right)^{23}\)
So sánh :
\(\left(-\frac{1}{27}\right)^{53}và\left(-\frac{1}{243}\right)^{23}\)
\(-\frac{1}{27}=-\frac{1}{3^3}\) => \(\left(-\frac{1}{27}\right)^{53}=\left(\left(-\frac{1}{3}\right)^3\right)^{53}=\left(-\frac{1}{3}\right)^{159}\)
\(-\frac{1}{243}=-\frac{1}{3^5}\) => \(\left(-\frac{1}{243}\right)^{23}=\left(\left(-\frac{1}{3}\right)^5\right)^{23}=\left(-\frac{1}{3}\right)^{115}\)
vẬY \(\left(-\frac{1}{27}\right)^{53}< \left(-\frac{1}{243}\right)^{23}\)
\(\left(\frac{-1}{27}\right)^{53}\)=\(\left(\frac{-1}{3}\right)^{3X53}\)=\(\left(\frac{-1}{3}\right)^{159}\)
\(\left(\frac{-1}{243}\right)^{23}\)=\(\left(\frac{-1}{3}\right)^{5X23}\)=\(\left(\frac{-1}{3}\right)^{115}\)
=>\(\left(\frac{-1}{3}\right)^{159}\)>\(\left(\frac{-1}{3}\right)^{115}\)
=>\(\left(\frac{-1}{27}\right)^{53}\)>\(\left(\frac{-1}{243}\right)^{23}\)
so sánh
a)\(\left(\frac{1}{2}\right)^{27}và\left(\frac{1}{3}\right)^{18}\) b)\(\frac{-53}{78}và\frac{-57}{87}\)
a)Ta có:
\(\left(\frac{1}{2}\right)^{27}=\left[\left(\frac{1}{2}\right)^3\right]^9=\left(\frac{1}{8}\right)^9\)
\(\left(\frac{1}{3}\right)^{18}=\left[\left(\frac{1}{3}\right)^2\right]^9=\left(\frac{1}{9}\right)^9\)
Vì \(\left(\frac{1}{8}\right)^9>\left(\frac{1}{9}\right)^9\) nên \(\left(\frac{1}{2}\right)^{27}>\left(\frac{1}{3}\right)^{18}\)
So sánh:
a)\(\left(\frac{1}{80}\right)^7và\left(\frac{1}{243}\right)^6\)
b)\(\left(\frac{3}{8}\right)^5và\left(\frac{5}{243}\right)^3\)
So sánh :\(\left(^{\frac{1}{27}}\right)^{23}\)với \(\left(\frac{1}{81}\right)^{16}\)
\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)
\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)
Vì 369 > 364
\(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)
\(\left(\frac{1}{27}\right)^{23}=\frac{1^{23}}{27^{23}}=\frac{1}{\left(3^3\right)^{23}}=\frac{1}{3^{69}}\)
\(\left(\frac{1}{81}\right)^{16}=\frac{1^{16}}{81^{16}}=\frac{1}{\left(3^4\right)^{16}}=\frac{1}{3^{64}}\)
Vì 369 > 364
=> \(\frac{1}{3^{69}}< \frac{1}{3^{64}}\)
=> \(\left(\frac{1}{27}\right)^{23}< \left(\frac{1}{81}\right)^{16}\)
1:So sánh:\(\left(\frac{1}{80}\right)^7\) và\(\left(\frac{1}{243}\right)^6\)
2:So sánh:\(\left(\frac{3}{8}\right)^5\)và\(\left(\frac{5}{243}\right)^3\)
làm nhanh giúp mình nhé!
so sánh:
\(127^{23}và513^{18}\)
\(\left(\frac{1}{243}\right)^9và\left(\frac{1}{83}\right)^{13}\)
Tìm \(x\)sao cho:
\(\left(x+\frac{1}{1\cdot3}\right)+\left(x+\frac{1}{3\cdot5}\right)+\left(x+\frac{1}{5\cdot7}\right)+...+\left(x+\frac{1}{23\cdot25}\right)=11\cdot x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi
so sánh:
a)\(\left(\frac{1}{80}\right)^7và\left(\frac{1}{243}\right)^6\)
b)\(\left(\frac{3}{8}\right)^5và\left(\frac{5}{243}\right)^3\)
giải chi tiết cho mk nha!!!
So sánh
a)\(\left(\frac{1}{80}\right)^7\)và \(\left(\frac{1}{243}\right)^6\)
b)\(\left(\frac{3}{8}\right)^5\)và \(\left(\frac{5}{243}\right)^3\)
c) \(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)