\(\frac{3}{5}< \frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+.....+\frac{1}{4006}< \frac{3}{4}\)
\(\frac{3}{5}< \frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+...+\frac{1}{4006}< \frac{3}{4}\)
chứng minh rằng
\(1< \frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{3n+1}< 2\)
\(\frac{3}{5}< \frac{1}{2004}+\frac{2}{2005}+\frac{2}{2006}+...+\frac{1}{4006}< \frac{3}{4}\)
CMR:\(\frac{3}{5}< \frac{1}{2004}+\frac{1}{2005}+...+\frac{1}{4006}< \frac{3}{4}\)
CMR:\(\frac{3}{5}< \frac{1}{2004}+\frac{1}{2005}+...+\frac{1}{4006}< \frac{3}{4}\)
bài này khéo phải hỏi giáo viên thôi
\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...........+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.............+\frac{1}{2006}}\)
Đặt biểu thức là A ta có:
\(A=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)}{1+\left(1+\frac{2005}{2}\right)+\left(1+\frac{2004}{3}\right)+...+\left(1+\frac{1}{2006}\right)}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{1+\frac{2007}{2}+\frac{2007}{3}+...+\frac{2007}{2006}}\)
\(\Rightarrow A=\frac{2006.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)}{2007.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}+\frac{1}{2007}\right)}\)
\(\Rightarrow A=\frac{2006}{2007}\)
Tinh A = \(\frac{\frac{2006}{1}+\frac{2006}{2}+\frac{2006}{3}+........\frac{2006}{2006}+\frac{2006}{2007}}{\frac{1}{2006}+\frac{2}{2005}+\frac{3}{2004}+.........+\frac{2005}{2}+\frac{2006}{1}}\)
tính hợp lí C=\(\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+...+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+...+\frac{1}{2006}}\)
\(C=\frac{\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}}{\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}}\)
Đặt N = \(\frac{2006}{1}+\frac{2005}{2}+\frac{2004}{3}+.....+\frac{1}{2006}\)
\(\Rightarrow N=\frac{1}{2006}+.....+\frac{2004}{3}+\frac{2005}{2}+\frac{2006}{1}\)
\(\Rightarrow N=\left(\frac{1}{2006}+1\right)+.....+\left(\frac{2004}{3}+1\right)+\left(\frac{2005}{2}+1\right)+1\)( Có 2005 nhóm )
\(=\frac{2007}{2006}+....+\frac{2007}{3}+\frac{2007}{2}+\frac{2007}{2007}\)
\(=2007\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2006}+\frac{1}{2007}\right)\)
Đặt M = \(\frac{2006}{2}+\frac{2006}{3}+\frac{2006}{4}+....+\frac{2006}{2007}\)
\(=2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)\)
Thay N và M vào C , ta có :
\(C=\frac{N}{M}=\frac{2006\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2007}\right)}{2007\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2007}\right)}=\frac{2006}{2007}\)
\(\Rightarrow C=\frac{2006}{2007}\)
Vậy : \(C=\frac{2006}{2007}\)
cm P=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2006}<\frac{2}{5}\)
C=\(\frac{\frac{2006}{2}}{\frac{2006}{1}}\) +\(\frac{2006}{\frac{3}{\frac{2005}{2}}}\) +\(\frac{2006}{\frac{4}{\frac{2004}{3}}}\) +...+\(\frac{2006}{\frac{2007}{\frac{1}{2006}}}\)