Tính:1.3+3.5+5.7+7.9+......+97.99
Tính GTBT:1.3/3.5+2.4/5.7+3.5/7.9+...+48.50/97.99
tính giá trị biểu thức
B=1.3+3.5+5.7+7.9+...+97.99
Bạn tham khảo nhé!
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 12 + 32 + 52 + … + 992
=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)
Tính dãy tổng quát C = 12 + 22 + 32 + … + n2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Đ/s: A = 172650.
tính giá trị biểu thức sau:A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99
A= \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{97.99}\)
2A= 1 - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\)
2A= 1-\(\dfrac{1}{99}\)
2A= \(\dfrac{98}{99}\)
A= \(\dfrac{98}{99}\) : 2
A=\(\dfrac{49}{99}\)
S=1.3+3.5+5.7+7.9+...+97.99+99.101
Ta có : S = 1.3 + 3.5 + 5.7 + .... + 97.99 + 99.101
=> 6S = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6 + 99.101.6
= 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7.(9 - 3) + .... + 97.99.(101 - 95) + 99.101.(103 - 97)
= 3 + 1.3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99 + 99.101.103 - 97.99.101
= 3 + 99.101.103
= 1029900
=> 6S = 1029900
=> S = 171650
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (1^2 + 3^2 + 5^2 + … + 97^2 + 99^2) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 1^2 + 3^2 + 5^2 + … + 99^2
=> B = (1^2 + 2^2 + 3^2 + 4^2 + … + 100^2) – 2^2.(1^2 + 2^2 + 3^2 + 4^2 + … + 50^2)
Tính dãy tổng quát C = 1^2 + 2^2 + 3^2 + … + n^2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Đ/s: A = 172650.
Tính giá trị biểu thức sau: A= 1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}\)
\(=\dfrac{49}{99}\)
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(A=\frac{1}{1}-\frac{1}{99}\)
\(A=\frac{98}{99}\)
ta có A=1-1/3+1/2-1/5+..................1/95-1/97+1/97-1/99
A=1-1/99
A=98/99
Cho A =2/1.3+2/3.5+2/5.7+2/7.9+....2/97.99
A=1-1/3+1/3-1/5+1/5-1/7+..........+1/97-1/98
A=1-1/98
A=98/99
Tính nhanh
S=1.2+3.4+4.5+............+1999.2000
B=1.1+2.2+3.3+......................+1999.1999
C=1.2.3+2.3.4+.......................+48.49.50
D=1.3+3.5+5.7+7.9+..............+97.99
các bạn cho mk hỏi câu này
2/3.5+2/5.7+2/7.9+...+2/97.99
thì mk sẽ viết thành
1/3.5+1/5.7+1/7.9+...+1/97.99
hay
2.(1/3.5+1/5.7+1/7.9+...+1/97.99)
giúp mk với
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
~ Hok tốt ~
\(\)
Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99