Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhật Vy Nguyễn
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Trần Minh Hoàng
18 tháng 12 2020 lúc 19:36

Đề bài: Giải hệ phương trình:

\(\left\{{}\begin{matrix}y^3-12y-x^3+6x^2-16=0\left(1\right)\\4y^2+2\sqrt{4-y^2}-5\sqrt{4x-x^2}+6=0\left(2\right)\end{matrix}\right.\).

Giải:

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le4\\-2\le y\le2\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow y^3-12y=\left(x-2\right)^3-12\left(x-2\right)\)

\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+\left(x-2\right)y+y^2-12\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y+2\\x^2+xy+y^2-4x-2y-8=0\end{matrix}\right.\).

+) TH1: \(x=y+2\): Thay vào (2) ta được:

\(4y^2+2\sqrt{4-y^2}-5\sqrt{4\left(y+2\right)-\left(y+2\right)^2}+6=0\)

\(\Leftrightarrow4y^2+2\sqrt{4-y^2}-5\sqrt{4-y^2}+6=0\)

\(\Leftrightarrow4y^2+6=3\sqrt{4-y^2}\)

\(\Leftrightarrow\left(4y^2+6\right)^2=9\left(4-y^2\right)\)

\(\Leftrightarrow16y^4+57y^2=0\)

\(\Leftrightarrow y=0\Rightarrow x=2\) (TMĐK).

+) TH2: \(x^2+xy+y^2-4x-2y-8=0\):

\(\Leftrightarrow\left(x-2\right)^2+y^2+\left(x-2\right)y=12\).

Do VT \(\le12\) (Đẳng thức xảy ra khi và chỉ khi x = 4; y = 2 hoặc x = 0; y = -2).

Do đó \(\left[{}\begin{matrix}x=4;y=2\\x=0;y=-2\end{matrix}\right.\).

Thử lại không có gt nào thỏa mãn.

Vậy...

 

Phương Tuyết
Xem chi tiết
Diệp Nhi
Xem chi tiết

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

Khách vãng lai đã xóa
I lay my love on you
Xem chi tiết

\(\hept{\begin{cases}\frac{x}{\sqrt{y}}+\frac{2\sqrt{y}}{x}=\frac{2}{x}+\frac{1}{\sqrt{y}}-3\left(1\right)\\x^2-xy-9x+12=0\left(2\right)\end{cases}}\)

Đặt \(\frac{2}{x}=a,\frac{1}{\sqrt{y}}=b\left(b>0\right)\)

\(\left(1\right)\Leftrightarrow\frac{2b}{a}+\frac{a}{b}=a+b-3\)

\(\Leftrightarrow2b^2+a^2+3ab=ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a+2b\right)=\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(a-ab+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(3\right)\\a-ab+2b=0\left(4\right)\end{cases}}\)

Giải (3)

\(\left(3\right)\Leftrightarrow\frac{2}{x}=-\frac{1}{\sqrt{y}}\Leftrightarrow\frac{4}{x^2}=\frac{1}{y}\)

\(\Leftrightarrow y=\frac{x^2}{4}\). Thay vào (2) tìm nghiệm (x,y)

Giải (4)

\(\left(4\right)\Leftrightarrow\frac{2}{x}-\frac{2}{\sqrt{y}}+\frac{2}{x\sqrt{y}}=0\)

\(\Leftrightarrow\sqrt{y}-x+2=0\)

Giải tiếp là ra

Học tốt!!!!!!!!!

Khách vãng lai đã xóa
Princess U
Xem chi tiết
Nguyễn Linh Chi
21 tháng 2 2019 lúc 8:18

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

Incursion_03
21 tháng 2 2019 lúc 8:25

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

Princess U
21 tháng 2 2019 lúc 17:29

cảm ơn mọi người ạ <3

Nguyễn Cảnh Kyf
Xem chi tiết
Tran Le Khanh Linh
1 tháng 3 2020 lúc 12:49

Từ phương trình của 2 hệ ta suy ra x,y >=0. Xét phương trình

\(x^3+y^3+7\left(x+y\right)xy=8xy\sqrt{2\left(x^2+y^2\right)}\)

\(x^3+xy+y^3+7\left(x+y\right)=\left(x+y\right)\left(x^2+y^2+6xy\right)=\left(x+y\right)\left[\left(x+y\right)^2+4xy\right]\)

Theo bất đằng thức Cô Si ta có:

\(\left(x+y\right)^2+4xy\ge2\sqrt{\left(x+y\right)^2\cdot4xy}\). Ta có:

\(\left(x+y\right)^2=\left(x^2+y^2\right)+2xy\ge2\sqrt{\left(x^2+y^2\right)\cdot2xy}\)

\(\Rightarrow x^3+y^3+7\left(x+y\right)xy\ge8xy\sqrt{2\left(x^2+y^2\right)}\)

Dấu "=" xảy ra khi và chỉ khi x=y

Thay vào phương trình (2) ta thu được

\(\sqrt{x}-\sqrt{2x-3}-6=6-2x\)

\(\Leftrightarrow\sqrt{2x-3}-\sqrt{x}=2\left(x-3\right)\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Rightarrow\orbr{\begin{cases}x=3\\\sqrt{2x-3}+\sqrt{x}=\frac{1}{2}\end{cases}}\)

Do \(x\ge\frac{3}{2}\)nên phương trình vô nghiệm

Hệ phương trình có nghiệm x=y=3

Khách vãng lai đã xóa
lily
Xem chi tiết
Hắc Thiên
Xem chi tiết