Tính: \(Q=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Tính \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Tính
\(P=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\left(1+n-\frac{n}{n+1}\right)^2}=1+n-\frac{n}{n+1}\text{ }\left(n>0\right)\)
\(P==1+2015-\frac{2015}{2016}+\frac{2015}{2016}=2016\)
\(\left(1+n-\frac{n}{n+1}\right)^2=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2\left(n-\frac{n}{n+1}-\frac{n^2}{n+1}\right)\)
\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}+2.\frac{n^2+n-n-n^2}{n+1}\)
\(=1+n^2+\frac{n^2}{\left(n+1\right)^2}\)
RGBT:
E=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Giúp mình với
Tính:
\(P=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
Đề viết sai nha bạn phải là \(-\frac{2015^2}{2016^2}\)
\(=\sqrt{1+2015^2-\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(=\sqrt{\left(1+2015-\frac{2015}{2016}\right)^2}+\frac{2015}{2016}\)
\(=1+2015-\frac{2015}{2016}+\frac{2015}{2016}\)
\(=2016\)
tick cho mình nha
\(x+2015\frac{1}{2}=\sqrt{1+2015^2+\frac{2015^2}{20162}}+\frac{2015}{2016}\)
Rút gọn \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}+\frac{2015}{2016}}\)
Rút gọn :
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}.}\)
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
=\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)
=\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
=\(1-\frac{1}{\sqrt{2016}}\)
đến đây cậu tự giải nốt nhé
bạn coi thử sách VHB đi hình như có đấy
Chứng minh :
\(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=\left|1+\frac{1}{a}-\frac{1}{a+1}\right|\)
Áp dụng tính: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)