Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huệ
Xem chi tiết
Nguyễn Vũ Phượng Thảo
17 tháng 4 2016 lúc 11:10

Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)

Suy ra:

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)

                               A<1+1-\(\frac{1}{50}\)

                               A<2-\(\frac{1}{50}\)<2

             Vậy A<2(đpcm)

                              

Nguyễn Thị Huệ
17 tháng 4 2016 lúc 8:17

em viết sai 

chứng minh A < 2

Công chúa hoàng gia
17 tháng 4 2016 lúc 8:36

viết phân số thế nào đấy nói đi chỉ cách làm cho

Phạm Thành Nam
Xem chi tiết
le bao truc
6 tháng 5 2017 lúc 21:54

\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(.......\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\)
\(\Rightarrow A< 2\)
 

bui thi lan phuong
15 tháng 5 2017 lúc 16:27

a<2 ai k cho mik, mik se k lại hứa thế lun nói là làm

Hoàng Văn Dũng
15 tháng 5 2017 lúc 16:45

ta có:1/1^2=1/1

1/2^2=1/2*2<1/1*2=1/1-1/2

1/3^2=1/3*3<1/2*3=1/2-1/3

1/4^2=1/4*4<1/3*4

...

1/50^2=1/50*50<1/49*50=1/49-1/50

=>A=1/1-1/50+1

A=99/50<100/50=2

=>A<2

vậy A<2

vvvvvvvv
Xem chi tiết
Dũng Lê Trí
5 tháng 5 2017 lúc 21:23

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(\frac{1}{1^2}=1\)

Ta có :

\(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\left(dpcm\right)\)

Hoàng Phú Nguyễn
Xem chi tiết
Kudo Shinichi
11 tháng 4 2017 lúc 18:42

\(\frac{1}{2^2}< \frac{1}{1.2}\)

...................\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

\(\Rightarrow A< 1-\frac{1}{50}< \frac{49}{50}< 1< 2\)

Nguyễn Hoàng Lâm
10 tháng 4 2017 lúc 23:09

1/2^2<1/1*2;1/3^2<1/2*3;1/4^2<1/3*4;1/50^2<1/49*50

ta có:

   =>    1/1^2+1/2*3+1/3*4+...+1/49*50

  <=>   1/1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

  <=>   1-1/50 < 2

    =>   A < 2

Masumi Sera
10 tháng 4 2017 lúc 23:26

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

  =\(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

                                                                                         \(< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

                                                                                          \(< 1+1-\frac{1}{50}=\frac{99}{50}< 2\)

                     => \(A< 2\)

༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Le Phuc Thuan
17 tháng 3 2017 lúc 19:47

TA CÓ Vế trái <\(\frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

do đó VT <2(dpcm)

Bexiu
17 tháng 3 2017 lúc 19:47

1+12=13

Đinh Khắc Duy
17 tháng 3 2017 lúc 19:54

\(\frac{1}{1^2}=1\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

  \(.\)         \(.\)

  \(.\)         \(.\)

  \(.\)         \(.\)

\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)

Cộng vế với vế ta có \(:\)

\(C< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...........+\frac{1}{49\cdot50}\)

\(C< 1+\frac{49}{50}< \frac{50+49}{50}=\frac{99}{50}< \frac{100}{50}=2\)

Vậy \(C=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}< 2\)

Nguyễn Thanh Hiền
Xem chi tiết
Kaori Miyazono
2 tháng 5 2017 lúc 13:11

\(A=\frac{1}{1^1}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)

Khi đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}=B\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{49}-\frac{1}{50}< 1\)

Vì \(A< 1+B\)mà \(B< 1\)nên \(B+1< 2\)do đó \(A< 2\)

Vậy \(A< 2\)

Nguyễn Tiến Dũng
2 tháng 5 2017 lúc 13:07

1/12+1/22+....+1/502<1/1+1/1x2+1/2x3+....+1/49x50=1-1/50=49/50<2

=>A<2(đpcm)

le bao truc
2 tháng 5 2017 lúc 13:29

Ta co 

1/2^2<1/1-1/2

1/3^2<1/2-1/3

1/4^2<1/3-1/4

...

1/50^2<1/49-1/50

=>1/1^2+...+1/50^2<1/1-1/2+1/2-1/3+...+1/49-1/50=1/1-1/50=49/50

Ma 49/50<2

=> 1/1^2+1/2^2+...+1/50^2<2

Itsuka Hiro
Xem chi tiết
Vũ Thành Dương
Xem chi tiết
Thắng Nguyễn
8 tháng 4 2016 lúc 20:48

đặt B=1/2.3+1/3.4+...+1/49.50

=1/1.2+1/2.3+1/3.4+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)

từ (1),(2),(3) =>A<2

Bùi Minh Anh
8 tháng 4 2016 lúc 20:51

Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)

=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)

=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)

=> \(A<2-\frac{1}{50}\Rightarrow A<2\)

Vậy A nhỏ hơn 2

Đỗ Ngọc Huyền
Xem chi tiết
Dương Bảo Lưu
25 tháng 7 2018 lúc 7:22

Số 4/9 4/9 nhân hay cộng vậy

Chu Uyển Nhi
Xem chi tiết
Trà My
15 tháng 5 2016 lúc 11:21

Đề bài yêu cầu chứng minh dãy phân số bé hơn ko