Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huyen luuthu
Xem chi tiết
Đinh Đức Hùng
7 tháng 7 2016 lúc 11:08

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{1999.2000}-\frac{1}{2000.2001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2000.2001}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4002000}\right)=\frac{1}{2}\left(\frac{2000999}{4002000}\right)=\frac{2000999}{8004000}\)

soyeon_Tiểu bàng giải
7 tháng 7 2016 lúc 11:13

A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/1999.2000.2001

A = 1/2.(2/1.2.3 + 2/2.3.4 + 2/3.4.5 + 2/3.4.5 + ... + 2/1999.2000.2001)

A = 1/2.(1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/1999.2000 - 1/2000.2001)

A = 1/2.(1/1.2 - 1/2000.2001)

A = 1/2.(1/2 - 1/4002000)

Đến đây số to wa, bn tự lm típ

Chú ý: tính hiệu giữa: 1/1.2 - 1/2.3 = 3/1.2.3 - 1/1.2.3 = 2/1.2.3, nhân thêm 2 vào tử

Ủng hộ mk nha ^_-

Ngọc Ánh Trương
Xem chi tiết
Nguyệt
12 tháng 10 2018 lúc 12:16

đặt S=1.2.3+2.3.4+....+47.48.49

4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49

4S=47.48.49.50-1.2.3

S=(47.48.49.50-1.2.3):4

Edogawa Conan_ Kudo Shin...
12 tháng 10 2018 lúc 12:31

cool queen đúng rồi

Thấu Minh Phong
12 tháng 10 2018 lúc 12:34

???????????

Nguyễn Quốc Khánh
Xem chi tiết
Arima Kousei
15 tháng 4 2018 lúc 17:37

\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2009.2010.2011}\)

\(S=2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2009.2010.2011}\right)\)

\(S=2.\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2009.2010}-\frac{1}{2010.2011}\right)\)

\(S=1.\left(\frac{1}{1.2}-\frac{1}{2010.2011}\right)\)

\(S=\frac{1}{1.2}-\frac{1}{2010.2011}\)

\(S=\frac{1}{2}-\frac{1}{2010.2011}< \frac{1}{2}\)

Vậy \(S< \frac{1}{2}\)

Chúc bạn học tốt !!! 

Arima Kousei
15 tháng 4 2018 lúc 17:38

Áp dụng công thức : 

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

Chúc bạn học tốt !!! 

Nguyễn Đặng Lan Anh
Xem chi tiết
ST
23 tháng 2 2017 lúc 21:48

Ta có: \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\)

\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)

\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)

\(\Rightarrow x=\frac{23}{11}\)

Nguyễn Xuân Long
23 tháng 2 2017 lúc 22:00

Đặt A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)

    2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\)

    2A=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}\) \(+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

    2A=\(\frac{1}{1.2}-\frac{1}{9.10}\)

    2A=\(\frac{22}{45}\)

      A=\(\frac{22}{45}\div2\)

      A=\(\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)

             \(x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)

Vậy x=\(\frac{23}{11}\)

Nguyễn Thái Dương
Xem chi tiết
Nguyễn Vũ Minh Hiếu
28 tháng 4 2019 lúc 19:32

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(A=\frac{1}{2}.\frac{370}{741}\)

\(A=\frac{185}{741}\)

%$H*&
28 tháng 4 2019 lúc 19:34

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

Tự tính tiếp nha =)) mỏi tay quá

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+......+\frac{1}{37.38.39}\)

    \(=\) \(1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{3}-\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)

    \(=\)\(1-\frac{1}{39}\)

    \(=\)\(\frac{38}{39}\)

Vậy \(A=\frac{38}{39}\)

6a01dd_nguyenphuonghoa.
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 7 2023 lúc 9:27

a/

\(b=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(2b=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{99-97}{97.99}=\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}=\)

\(=1-\dfrac{1}{99}=\dfrac{98}{99}\Rightarrow b=\dfrac{98}{2.99}=\dfrac{49}{99}\)

b/

\(c=\dfrac{3-1}{1.2.3}+\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}=\)

\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{98.99}-\dfrac{1}{99.100}=\)

\(=\dfrac{1}{2}-\dfrac{1}{99.100}\)

c/

\(\dfrac{2}{5}.d=\dfrac{4-2}{2.3.4}+\dfrac{5-3}{3.4.5}+...+\dfrac{100-98}{98.99.100}+\dfrac{101-99}{99.100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}+\dfrac{1}{99.100}-\dfrac{1}{100.101}=\)

\(=\dfrac{1}{2.3}-\dfrac{1}{100.101}\Rightarrow d=\left(\dfrac{1}{2.3}-\dfrac{1}{100.101}\right):\dfrac{2}{5}\)

Phạm Ngôn Hy
Xem chi tiết
Hồ Anh Tú
6 tháng 7 2017 lúc 9:42

D=1/2.[1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20]-3.[1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20]

  =1/2.[1/2-1/380]-3.[1-1/20]

  =1/2.[189/380]-3.[19/20]

  =189/760-57/20

  =189/760-2166/760

  =-1977/760

Nhớ nhak

Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 9:31

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)

Nguyễn Hoàng Minh
26 tháng 9 2021 lúc 9:41

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)

Edogawa Conan
26 tháng 9 2021 lúc 9:44

Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

   \(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)

             \(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)

             \(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)

  \(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)

Hà Thu Nguyễn
Xem chi tiết
soyeon_Tiểubàng giải
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)