\(\frac{5}{1.4}+\frac{5}{4.7}+............+\frac{5}{100.103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+.....+\frac{5}{100.103}\)
=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)
=5/3.(1/1-1/103)
=5/3.102/103
=170/103
=5/3.(1/1-1/4+1/4-1/7+...+1/100-1/103)
=5/3.(1/1-1/103)
=5/3.102/103
=170/103
\(S=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=?\)
S = \(5-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+.......+\frac{5}{100}-\frac{5}{103}\)
S = \(5-\frac{5}{103}\)
S = \(\frac{510}{103}\)
tính nhanh:
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.........+\frac{5}{100.103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
=5/3.(3/1.4+3/4.7+3/7.10+...+3/100.103)
=5/3.(1-1/4+1/4-1/7+1/7-1/10+...+1/100-1/103)
=5/3.(1-1/103)=5/3.102/103=170/103
đáp số : 170/103
Tính:
\(A=\frac{5}{1.4}+\frac{29}{4.7}+\frac{71}{7.10}+...+\frac{10301}{100.103}\)
Thực hiện phép tính
\(\frac{5}{1.3}-\frac{5}{3.5}+--\frac{5}{5.7}-...-\frac{5}{99.101}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
a cong tru loan nen ko hieu
b
A=5/1.4+5/4.7+..5/100.103
3/5.A=3/1.4+3/4.7+..+3/100.103
=1/1-1/4+1/4-1/7+...+1/100-1/103
=1-1/103=102/103
A=(5.102)/(3.103)=5.34/103
Tính :
D= \(\frac{5}{1.4}\)+ \(\frac{5}{4.7}\)+ .....+\(\frac{5}{100.103}\)
=\(\frac{5}{3}\cdot\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)\)
=\(\frac{5}{3}\cdot\frac{102}{103}\)=\(\frac{170}{103}\)
Vậy D=\(\frac{170}{103}\)
Tính tổng:
B= \(\frac{5}{1.4}\)+ \(\frac{5}{4.7}\)+...+\(\frac{5}{100.103}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=5\left(1-\frac{1}{103}\right)\)
\(3B=5.\frac{102}{103}\)
\(3B=\frac{510}{103}\)
\(\Rightarrow B=\frac{170}{103}\)
Ta có:
B=\(\frac{5}{1.4}\)+\(\frac{5}{4.7}+.....+\frac{5}{100.103}\)
B=\(\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+....+\frac{3}{100.103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\right)\)
B=\(\frac{5}{3}\left(1-\frac{1}{103}\right)\)
B=\(\frac{5}{3}.\frac{102}{103}\)
B=\(\frac{170}{103}\)
Vậy B=\(\frac{170}{103}\)
nhớ k
B = \(\frac{5}{1.4}\)+ \(\frac{5}{4.7}\)+ ..... + \(\frac{5}{100.103}\)
giúp mk với nha mina
Trả lời
\(B=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+...+\frac{5}{100\cdot103}\)
\(\frac{3}{5}B=\frac{3}{5}\left(\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+...+\frac{5}{100\cdot103}\right)\)
\(\frac{3}{5}B=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{...3}{100\cdot103}\)
\(\frac{3}{5}B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(\frac{3}{5}B=1-\frac{1}{103}\)
\(\frac{3}{5}B=\frac{102}{103}\)
\(B=\frac{102}{103}:\frac{3}{5}\)
\(B=\frac{170}{103}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=15\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(3B=15\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3B=15\left(\frac{1}{1}-\frac{1}{100}\right)=15\left(\frac{100}{100}-\frac{1}{100}\right)=15.\frac{99}{100}\)
\(B=\frac{1}{3}.15-\frac{1}{3}.\frac{99}{100}=5-\frac{33}{100}=\frac{500}{100}-\frac{33}{100}=\frac{467}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
Tính:
a) \(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
b) \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
a)\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=\frac{5}{3}\cdot\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{170}{103}\)b)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}\cdot\frac{16}{51}=\frac{8}{51}\)
Câu a) bạn Ác Mộng làm rồi nên mình làm b) nha
b)Gọi A = \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2A=\frac{1}{3}-\frac{1}{51}\)
\(2A=\frac{16}{51}\)
\(A=\frac{16}{51}:2\)
\(A=\frac{8}{51}\)
5*(5-5/4+5/4-5/7+.......+5/100-5/103)
5*(5-5/103)
5*......... bạn tự tính nhé
câu b 1/3*5+1/5*7+............+1/49*51
1*(1/1-1/3+1/3-1/5+............+1/49-1/51)
1/1-1/51 tính ra rồi ra kết quả
tk nha