Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Tuyết
Xem chi tiết
Edogawa Conan
16 tháng 9 2018 lúc 13:37

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

Doraemon
16 tháng 9 2018 lúc 13:47

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)

Doraemon
16 tháng 9 2018 lúc 13:58

a, Ta có: \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)

Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(MAX_P=2010\Leftrightarrow x=-1\)

không cần biết
Xem chi tiết
Đỗ Ngọc Hải
28 tháng 5 2015 lúc 20:29

a,C=(1/(1-x)+2/(x+1)-(5-x)/(1-x2)):(1-2x)/(x2-1)  ĐKXĐ:x khác -1 và 1

  =((x+1+1-x)/(1-x2)-(5-x)/(1-x2):(1-2x)/(x2-1)

  =(x-3)/(1-x2):(1-2x)/(x2-1)

  =(3-x)(x2-1):(1-2x)/(x2-1)

  =(3-x)/(1-2x)

b, Giá trị của B nguyên khi x=-2;0;1;3

Lê Phương Thảo
20 tháng 3 2017 lúc 21:02

sai rồi~

Hà Thị Thu Hương
Xem chi tiết
Trần Đức Thắng
14 tháng 6 2015 lúc 11:18

ĐK để phân thức XĐ : x khác 1 và x> 0

 Đặt \(B=\left(\frac{\left(\sqrt{x}+2\right)\left(x-1\right)-\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)}{\left(x+2\sqrt{x}+1\right)\left(x-1\right)}\right)\) ( Đây là mình vừa đặt vừa làm mẫu thức chung nhe)

  => \(B=\left(\frac{x\sqrt{x}-\sqrt{x}+2x-2-x\sqrt{x}-2x-\sqrt{x}+2x+4\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}\right)\)

=>\(B=\frac{2\sqrt{x}+2x}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(x-1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

A = \(B:\frac{\sqrt{x}}{\sqrt{x+1}}=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{2}{x-1}\)

B, Bạn tự làm ý B nhe

HD để A nguyên => x - 1 thuộc ước của 2 mà 2 có các ước là +-1 và +-2

(+) với x-1 = 2 => x = 3

............................

Phòng chống Corona
Xem chi tiết
Longg
Xem chi tiết
Minh Nguyen
23 tháng 1 2020 lúc 13:46

\(ĐK:x\ne1\)

Để \(A=\frac{5}{x-1}\)là số nguyên

\(\Leftrightarrow5⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-4;6\right\}\)

Để \(B=\frac{x+2}{x-1}\)là số nguyên

\(\Leftrightarrow x+2⋮x-1\)

\(\Leftrightarrow x-1+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)

Vậy để A và B cùng là số nguyên thì \(x\in\left\{0;2\right\}\)

Khách vãng lai đã xóa
Khank Ly ✿
23 tháng 1 2020 lúc 13:47

Trả lời :

Mình làm thế này nè sai thì thuii nhé :)

a ) Để  \(\frac{5}{x-1}\)  \(\varepsilon\) \(ℤ\) thì => 5 phải chia hết cho ( x-1 ) hay x - 1 = Ư(5) = { - 1 ; 1 ; 5 ; -5 }

Ta có bảng sau :

x-1-5-115
x-4026

b ) Để \(\frac{x+2}{x-1}\) \(\varepsilon\) \(ℤ\) thì \(\frac{3}{x-2}\) phải \(\varepsilon\) \(ℤ\) => 3 phải chia hết cho ( x - 1 ) và x \(\ne\) 1

+ => x - 1 = Ư(3) = { 1 ; - 1 ; 3 ; -3 }

Chúc bạn học tốt <3

Khách vãng lai đã xóa
Serein
23 tháng 1 2020 lúc 14:11

Trả lời:

Bạn •_ ♡Lazy :) ( Cool Team ) ơi, tại sao \(\frac{x+2}{x-1}\inℤ\)thì \(\frac{3}{x-2}\inℤ\)? Có vẻ đoạn này bạn làm sai rồi đó ạ (Ý kiến riêng)

Bạn 战哥 làm đr đó ạ! :)

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết
Hà Trí Kiên
Xem chi tiết

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

Hô hô
Xem chi tiết
Hoàng Thị Lan Hương
29 tháng 6 2017 lúc 10:17

a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

=\(\frac{x-4}{x-2}\)

b. Để A >0  thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)

Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)

c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)

Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{0,1,3,4\right\}\)

Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)

Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)

Hoàng Thị Lan Hương
29 tháng 6 2017 lúc 10:18

Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)

Phương Hà
Xem chi tiết